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1 Introduction

We consider the standard reinforcement learning formulation of an agent interacting with
an environment E = (O,A,P , ρ), where the elements of the tuple are, respectively, the
observation set, action set, transition probabilities, and distribution of initial observation.
The agent acts via a policy π : T → ∆(A), where T is the set of (non-terminal) histories, i.e.
sequences of observation-action pairs {(Ot, At)}τ−1

t=0 until termination time τ , and ∆ indicates
the set of all probability distributions on its input. In a reinforcement learning problem, we
are also given a reward Rt at each time step, depending on the pair (Ot, At), which can
be seen as internal to the agent, describing that agent’s preferences. The learning problem
itself is for the agent to learn a policy π that attempts to maximize the expected per-episode
cumulative reward E [

∑τ
t=0Rt|E , π].

2 Research Question

The overarching research program for this project is the question: how can an agent intel-
ligently and efficiently learn to represent world? We can easily construct problems where
an agent can take an action that will never lead to a reward later in the episode, but will
reveal something critical about the environment, allowing the agent to attain rewards in
later episodes. It is these settings, along with the intuition that an agent who understands
the mechanics of the world they inhabit can perform more optimally, that motivate us to
consider learning a representation of the world.

Adding inductive bias to an agent by having it learn to predict information about the
world given a state-action pair, in addition to the state-action value function, has proven a
successful way to accelerate and improve learning of the main task. One example is learning
“successor features,” which capture the expected state occupancy of the agent given some
state [1, 4]. Another fruitful avenue has been predicting auxiliary information that is in a
sense “local” to the current state-action, such as the reward observed in the next transition,
the next state, or an auto-encoder-like recovery of the current state given the learned feature
vector [2, 3]. Such ideas are generally referred to as “auxiliary tasks” or “generalized value
functions,” and have been shown to be effective ways to accelerate learning. The intuition
is that for an agent to do well in these auxiliary prediction tasks, it has to develop a good
way of understanding (i.e. featurization of) the environment. Note that to distinguish such
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general additional predictions used to train the agent from the precise meaning of “successor
features” of [4], we refer to them as successive features.

The formal mechanism by which, and situations in which predicting successive features
helps an agent learn are not well understood. This is the crux of our research question
for this project: under which situations does predicting successive features help an agent
learn? Our hypothesis is that successive features help when the observations generated by
the environment are complex, and do not in a sense “immediately reveal” the information
important for solving the problem.

As an operational instantiation of this idea, we consider the case when an environment
has “true features,” which are necessary and sufficient for solving the reinforcement problem
well using a simple approach such as DQN. For example, for the classic Cart-Pole problem,
cart position-and-velocity and pole position-and-velocity can be seen as “true features.” We
then perturb these features by mapping them via a random matrix to a high-dimensional
space (thus making the perturbed features low-rank). We note that while it is sufficient for
an agent to know how invert the matrix in order to recover the true features, it is not clear
that a general neural network will be able to learn this. We ask whether adding successive
features helps an agent learn in this simple version of a “complex environment.”

3 Relevant work: Auxiliary tasks

Auxiliary tasks articulate the idea that an agent that is able to make refined predictions
about other aspects of its environment should be better suited to adapt to its ultimate
reward-maximization task. An elaborate example is the HORDE architecture, introduced
by Sutton et. al. in 2011 [5], which, along with multiple variations such as many agents,
introduces the notion of a generalized value function. A generalized value function extends
the normal notion of state-action value function, and is parameterized by a pseudo-reward
function, a discount parameter, and a policy. The generalized value function formalizes the
idea of an agent having different “questions” which it is trying to answer. As opposed to the
main reward function introduced with the definition of the reinforcement learning problem,
a generalized value function is a way to capture rewards intrinsic to the agent that help it
understand its environment better, and eventually perform better on the main task. Specific
examples of such auxiliary tasks are changing the color of regions of the screen in a game,
moving a finite distance in a control task, and many other sub goals [3].

4 Method

4.1 Environment

The Cart-Pole environment is a standard RL problem. An agent controls the left-right
acceleration of a frictionless cart with a pole attached to a hinge on its body, seeking to
balance the pole. This is a common RL baseline problem a complete description of world
is contained in the standard features of angular and translational position and velocity (the
“true features” mentioned in §2), and a relatively simple agent can obtain near perfect
performance. Additionally, it is a expressive problem via its variants. By modulating the
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initial position of the pole (upright, or needing to be “swung up” from downward-hanging),
and the reward structure from dense (proportional to angle from the downward positing)
to sparse (only when the pole is balanced), the problem can be made more difficult and
interesting.

4.2 Input perturbations

Our general perturbation procedure is as following. Given that the true features lie in RD,
we generate a matrix A ∈ RN×D with i.i.d. Gaussian entries, where N ≥ D. True features
φ are then mapped to the new, higher dimensional features Aφ. We emphasize that the
sampling of A occurs when the RL algorithm begins, and A remains constant thereafter
throughout the learning process.

In the case of Cart-Pole, the true feature dimensionality is D = 4. We run experiments
with N = 4, N = 10, and finally N = 20.

4.3 Agent

We compare two different agents: a vanilla DQN agent (which can be seen as a base network
with a head predicting the Q function), and that same agent with additional heads added
to the network, each predicting a separate successive feature — one of: next reward, next
observed state, and a head that attempts to reconstruct the current input state (Figure 1).
Note that the heads output one prediction per possible action, thus allowing the network
to model a function from state-action pairs to each of the outputs. Note also that in this
context, we use “state” to denote the input to the base network, i.e. the perturbed true
features.

We use this architecture with the base outputting hidden features of dimension 50, and
with each head itself having a hidden layer of size 50. We train the network by using as our
loss the sum of losses for each head, scaled to be of the same order. Furthermore, each of
the heads except for the Q head (i.e. all the “successive features”) have and additional L2
regularization loss with scale 0.01.

5 Results

We run experiments for each setup for a number of different random seeds. Our main results
are reported in Figure 2, both for each seed, and averaged across seeds. (See the caption for
explanation of the columns.)

In general, we find that adding successive features seems to improve the agents’ cumula-
tive score, as well as the other desirable properties tallied in the columns. The improvement
due to successive features is generally more drastic in swing-up case, which may suggest that
random feature perturbations exacerbate the need to learn to understand the environment
in more complex tasks. This interpretation, namely that the multi-head agents learn better,
seems supported by comparing the learning curves of two kinds of agents (Fig. 3, Fig. 4).

Although our results suggest that the auxiliary predictions did help the agent learn
faster, it was not the clear binary distinction that we had hoped to observe. Ideally, we
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Figure 1: Multi-Headed Network Architecture. The heads displayed below the Q head can
be removed, thus turning this into a vanilla DQN.

(a) Results for Swing Up Problem (b) Results for Upright Problem

Figure 2: Experimental results. The non-“score” columns are as follows: “bal” refers to the
agent balancing the pole for at least ∼ 0.5 seconds; “spin” has a check if the agent did not
rapidly spin the pole; “> 0◦” has a check if the pole was ever above zero degrees agove the
horizontal.

would have been able to show that the introduction of the random matrix caused the DQN
agent without auxiliary predictions to be unable to learn. However, we were not able to
show this definitively. A key reason for this was the difficulty in comparing neural network
architectures. It is not clear whether the correct way to compare our architecture to that of
a vanilla network is to prioritize equating the total number of neurons, the maximum hidden
layer width, or the number of layers. We performed some preliminary experiments with a
wider base network, and found that this version of vanilla DQN performed as well as, if not
better than, the multi-headed network. It is known that wider networks are better function
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Figure 3: Single Q-Head Network Average Reward in the Swing-Up environment

Figure 4: Multi-Head Network Average Reward in the Swing-Up environment

approximators, so if we are comparing our multi-headed network to a vanilla network with
the same number of parameters but wider layers, we cannot be sure if the vanilla networks’
higher performance is due to the wider layer, or because successive features don’t matter in
the way we hoped they would.

Despite these considerations, it is clear that our current formulation of the random matrix
problem modulation does not transform a problem such that it cannot be solved without
successive features. It makes sense that a simply larger network will be able to do a better
job identifying the linear subspace to the features are confined. As such, while the results
are encouraging, we were not able to fully address our proximal research question, which was
if this particular problem augmentation would be only compatible with successive features
and not other techniques.

6 Future Directions

One question we are interested in is understanding feature learning in combination with
deep exploration. Although our random matrix feature perturbation framework above isn’t
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a perfect “switch” for turning on the need for representation learning, it may still prove
useful as a simple way to study this question, e.g. by turning to the sparse-reward version of
Cart-Pole. Another empirical direction we would like to investigate to build more intuition is
understanding the relationship between the perturbed feature dimension N and the learning
and performance of the agent. One way of studying this would be analyzing the rank of the
possible outputs of the base network (e.g. via spectral methods). We imagine this could
elucidate the effect of our transformation further, since we have observed its effect to not be
binary.

A key difficulty that arises in the study of successive features is that simple representa-
tions like a tabular agent or a linear agent do not fit into the setting needed for successive
features as we understand them: function approximators that contain some internal repre-
sentation of the inputs. So it appears that any setting in which we study successive features
experimentally, we must be using some kind of function approximator, most likely a neu-
ral network. An immediate simplification would be considering only one auxiliary head.
However, there may still be a lack of interpretability due to the nature of neural networks.
We would be interested in exploring whether successive features can be studied through a
rigorously interpretable function approximator.
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