Stationary Distributions for Random Markov Chains

Vasco Portilheiro

March 22, 2021

1 Introduction

The purpose of this note is to have written down some (very preliminary) work on the following problem. Consider a finite state space $[n] = \{1, \ldots, n\}$ equipt with a random Markov transition kernel — that is, a random row-stochastic matrix $P \in [0, 1]^{n \times n}$. What can we say about the the stationary distribution π ? That a unique π exists almost surely can be easily guaranteed by a natural choice of distribution on P, which I consider here. Namely, we let the rows of P be independently Dirichlet.¹

The rest of this note is organized as follows. I present the model and some of its easily identifiable properties in Section 2, followed by the conjecture on the distribution of π in Section 3. Next, Section 4 is devoted to explicitly finding the distribution of π when the number of states is n = 2. For ease of exposition I relegate to Section 5 some discussion of the fraction of relevant literature I have encountered so far [TODO].

2 Some basic calculations

I apologize in advance to any reader for the slightly cumbersome notation.

With that caveat, let's fully state the model. Considering fixed $\alpha_{ij} > 0$ for $i, j \in [n]$, the rows of P are independently sampled as

$$P_i \sim \operatorname{Dir}(\alpha_{i1}, \ldots, \alpha_{in}), \forall i \in [n].$$

We'll let ν denote the distribution of P, and ρ the distribution of any of its rows. Given an initial state X_0 (possibly random), the process $(X_t : t \ge 0)$ is given by

$$\mathbb{P}\left(X_t = j | X_{t-1} = i, P = p\right) = p_{ij}.$$

To save on space, I will write X_s^t for the sequence (X_s, \ldots, X_t) .

 $^{^1\}mathrm{I}$ owe my thanks to Jim Pitman for suggesting this setup.

"The most basic question" might be: how are sequences of states distributed? It is known that in a mixture of Markov chains, the initial state X_0 together with the set of transition counts between pairs of states is a sufficient statistic (Diaconis and Freedman 1980). Letting $c_{ij}(x_s^t) = |\{r \in [s, t-1] : x_{r+1} = i, x_r = j\}|$ be the count of *i*-to-*j* transitions in x_s^t , we see this fact in our answer to the most basic question.

$$\mathbb{P}\left(X_{1}^{t} = x_{1}^{t}|X_{0} = x_{0}\right) = \int \mathbb{P}\left(X_{1}^{t} = x_{1}^{t}|X_{0} = x_{0}, P = p\right)\nu(dp)$$

$$= \prod_{i=1}^{n} \int \prod_{j=1}^{n} p_{ij}^{c_{ij}(x_{0}^{t})}\rho(dp_{i})$$

$$= \prod_{i=1}^{n} \frac{B(c_{i1}(x_{0}^{t}) + \alpha_{i1}, \dots, c_{in}(x_{0}^{t}) + \alpha_{in})}{B(\alpha_{i1}, \dots, \alpha_{in})}$$
(1)

Here, I'm using the following notation for the "multivariate Beta" function

$$B(\alpha_1,\ldots,\alpha_m) = \frac{\Gamma(\alpha_1)\cdots\Gamma(\alpha_m)}{\Gamma(\alpha_1+\cdots+\alpha_m)}$$

From (1) we can derive other expressions of interest, such as the predictive distribution

$$\mathbb{P}\left(X_{t+1} = x_{t+1} | X_0^t = x_0^t\right) = \frac{c_{x_t x_{t+1}}(x_0^t) + \alpha_{x_t x_{t+1}}}{\sum_{j=1}^n c_{x_t j}(x_0^t) + \alpha_{x_t j}}$$
(2)

and the posterior density for P with respect to Lebesgue measure λ on the set $\{p \in [0,1]^{n \times n} : \sum_{j=1}^{n} p_{ij} = 1 \ \forall i \in [n]\}$ given an observed sequence x_0^t ,

$$\frac{d\nu(p|x_0^t)}{d\lambda} = \prod_{i=1}^n \frac{\prod_{j=1}^n p_{ij}^{c_{ij}(x_0^t) + \alpha_{ij} - 1}}{B\left(\sum_{k=1}^n c_{ik}(x_0^t) + \alpha_{ik}\right)}.$$
(3)

(Actually, the posterior can of course be derived directly.)

Equation (2) shows that we can view $(X_t : t \ge 0)$ as coming from an urn model. Namely, imagine we have n urns, each containing balls of n different colors: the *i*-th urn starts out with α_{ij} balls of color j. (We allow fractional ball counts here.) Then (2) describes the sequence of colors drawn when, starting from urn X_0 , we draw a ball at random of color X_1 and replace two balls of that color in the urn, then move to the urn numbered X_1 and repeat. Equivalently, we can also view this process as an *edge-reinforced* random walk on a directed graph of n vertices with initial weight α_{ij} on edge (i, j), where upon traversing any edge we increase its weight by one.

Let's turn our attention now to the main goal: the random stationary distribution π . Since P is almost surely irreducible, the ergodic theorem guarantees that as $t \to \infty$

$$\frac{\sum_{j=1}^{n} c_{ij}(X_0^t)}{t} \stackrel{\text{a.s.}}{\to} \pi(i).$$

This motivates writing down one more expression: the probability of a given number of occurrences of a state k up to but not including time t, or equivalently, the number of transitions out of k up to time t. Let

$$\mathcal{P}_k(s,t) = \left\{ x_0^t \in [n]^{t+1} : \sum_{j=1}^n c_{ij}(X_0^t) = s \right\}$$

be the set of paths x_0^t for which out of the t total transitions, s were from state k. Then

$$\mathbb{P}\left(\sum_{j=1}^{n} c_{kj}(X_0^t) = s\right) = \sum_{x_0^t \in \mathcal{P}_k(s,t)} \mathbb{P}\left(X_0 = x_0\right) \prod_{i=1}^{n} \frac{B(c_{i1}(x_0^t) + \alpha_{i1}, \dots, c_{in}(x_0^t) + \alpha_{in})}{B(\alpha_{i1}, \dots, \alpha_{in})}$$
(4)

follows from (1). We thus have a first characterization of the distribution of π

$$\mathbb{P}(\pi(k) \le r) = \lim_{t \to \infty} \sum_{s=0}^{\lfloor rt \rfloor} \sum_{x_0^t \in \mathcal{P}_k(s,t)} \mathbb{P}(X_0 = x_0) \prod_{i=1}^n \frac{B(c_{i1}(x_0^t) + \alpha_{i1}, \dots, c_{in}(x_0^t) + \alpha_{in})}{B(\alpha_{i1}, \dots, \alpha_{in})}.$$
 (5)

3 A conjecture

I think it's uncontroversial to call (5) unsatisfying. Fortunately, it's rather easy to investigate π directly through simulation. We don't even need to run the Markov chain; we just sample P and find its left eigenvector π of eigenvalue 1, and plot the histogram of values of $\pi(1)$, say. Below are these exact plots, where the Dirichlet distributions are identically symmetric, that is $\alpha_{ij} = \alpha$ for all i, j.

The orange lines are density functions of $\text{Beta}(n\alpha, n(n-1)\alpha)$. These would be the marginals $\pi(1)$ if $\pi \sim \text{Dir}(n\alpha \vec{1})$. The empirical densities seem to match these orange lines both as n increases and as α increases, giving us the following conjecture.

Conjecture 1. Let $P \in \mathbb{R}^{n \times n}$ with i.i.d. rows $P_i \sim \text{Dir}(\alpha \vec{1})$ for some $\alpha > 0$. Then for π the unique probability distribution such that $\pi = \pi P$, we have

$$d(\mathcal{L}(\pi), \operatorname{Dir}(n\alpha \vec{1})) \to 0$$

both as $n \to \infty$ and as $\alpha \to \infty$, for some distance between distributions d. Furthermore, this convergence happens "quickly."

A couple notes on this conjecture. First, I believe it's natural to consider a fixed symmetric Dirichlet as the distribution of i.i.d. rows of P, as a way to encode the idea that no state is "special." Secondly, a restricted version of this conjecture, with $\alpha = 1$ fixed, has been made by Bordenave, Caputo, and Chafai (2008), but as far as I know no work has been published towards its proof (or disproof).

4 The case of two states

In the case that n = 2, it's straightforward to find the distribution of $\pi(1)$ explicitly. We can write

$$P = \begin{bmatrix} 1 - \theta_1 & \theta_1 \\ \theta_2 & 1 - \theta_2 \end{bmatrix}$$

where $\theta_1 \sim \text{Beta}(\alpha_{11}, \alpha_{12})$ and $\theta_2 \sim \text{Beta}(\alpha_{21}, \alpha_{22})$ are independent. Some linear algebra shows that

$$\pi(1) = \frac{\theta_2}{\theta_1 + \theta_2} \qquad \qquad \pi(2) = \frac{\theta_1}{\theta_1 + \theta_2}.$$

It can be shown (see Pham-Gia (2000)) that $\pi(1)$ has density at t of

$$\frac{t^{\alpha_{21}-1}(1-t)^{\alpha_{21}+1}B(\alpha_{11}+\alpha_{21},\alpha_{12})_{2}F_{1}\left(\alpha_{11}+\alpha_{21},1-\alpha_{22};\alpha_{11}+\alpha_{21}+\alpha_{12};\frac{t}{1-t}\right)}{B(\alpha_{11},\alpha_{12})B(\alpha_{21},\alpha_{22})}$$

for $t \in (0, 1/2]$ and

$$\frac{t^{-(\alpha_{11}+1)}(1-t)^{\alpha_{11}-1}B(\alpha_{11}+\alpha_{21},\alpha_{22})_{2}F_{1}\left(\alpha_{11}+\alpha_{21},1-\alpha_{12};\alpha_{11}+\alpha_{21}+\alpha_{22};\frac{t}{1-t}\right)}{B(\alpha_{11},\alpha_{12})B(\alpha_{21},\alpha_{22})}$$

for $t \in [1/2, 1]$, where

$${}_{2}F_{1}(a,b;c;x) = \sum_{m=0}^{\infty} \frac{a^{(m)}b^{(m)}x^{m}}{c^{(m)}m!} = \int_{0}^{1} \frac{u^{a-1}(1-u)^{c-a-1}(1-xu)^{-b}}{\mathcal{B}(a,c-a)} du$$

is the ordinary hypergeometric function. (As is common, if not standard, $a^{(m)}$ refers to the *m*-th rising factorial of *a*.)

At the moment, it is unclear to me whether the expression above is helpful in proving Conjecture 1 for fixed n = 2 — probably in large part due to my unfamiliarity with the hypergeometric function. Furthermore, I don't see how the above might generalize to n > 2.

5 Some relevant work and ideas

TODO

References

- Bordenave, Charles, Pietro Caputo, and Djalil Chafai (2008). "Circular Law Theorem for Random Markov Matrices". In: May 2010. DOI: 10.1007/s00440-010-0336-1. arXiv: 0808.1502. URL: http://arxiv.org/abs/0808.1502%7B%5C%%7D0Ahttp://dx.doi. org/10.1007/s00440-010-0336-1.
- Diaconis, P. and D. Freedman (1980). "De Finetti's Theorem For Markov Chains". In: The Annnals of Probability 8.1, pp. 115–130. ISSN: 0091-1798. URL: http://projecteuclid. org/euclid.aop/1176996548.
- Pham-Gia, T. (2000). "Distributions of the ratios of independent beta variables and applications". In: Communications in Statistics - Theory and Methods 29.12, pp. 2693–2715. ISSN: 03610926. DOI: 10.1080/03610920008832632.