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1 Introduction

The purpose of this note is to have written down some (very preliminary) work on the
following problem. Consider a finite state space [n] = {1,...,n} equipt with a random
Markov transition kernel — that is, a random row-stochastic matrix P € [0, 1]"*". What
can we say about the the stationary distribution 77 That a unique 7 exists almost surely
can be easily guaranteed by a natural choice of distribution on P, which I consider here.
Namely, we let the rows of P be independently DirichletE]

The rest of this note is organized as follows. I present the model and some of its easily
identifiable properties in Section [2] followed by the conjecture on the distribution of 7 in
Section [3} Next, Section [4] is devoted to explicitly finding the distribution of 7 when the
number of states is n = 2. For ease of exposition I relegate to Section [5| some discussion of
the fraction of relevant literature I have encountered so far [TODO)] .

2 Some basic calculations

I apologize in advance to any reader for the slightly cumbersome notation.

With that caveat, let’s fully state the model. Considering fixed «;; > 0 for ¢,j € [n], the
rows of P are independently sampled as

P; ~ Dir(oy1, .. ., ), Vi € [n].

We'll let v denote the distribution of P, and p the distribution of any of its rows. Given an
initial state Xy (possibly random), the process (X; : t > 0) is given by

]P)(Xt = j|Xt—1 =1, P :p) = Dij-

To save on space, I will write X! for the sequence (X, ..., X}).

'T owe my thanks to Jim Pitman for suggesting this setup.



“The most basic question” might be: how are sequences of states distributed? It is known
that in a mixture of Markov chains, the initial state X, together with the set of transition
counts between pairs of states is a sufficient statistic (Diaconis and Freedman 1980). Letting
cij(zt) = |{r € [s,t = 1] : 11 = i, 2, = j}| be the count of i-to-j transitions in z’, we see
this fact in our answer to the most basic question.

P (Xit =2t | Xy = 350) = /]P’(Xf =2t | Xy = 0, P :p)y(dp)
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Here, I'm using the following notation for the “multivariate Beta” function
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From we can derive other expressions of interest, such as the predictive distribution
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and the posterior density for P with respect to Lebesgue measure A on the set {p € [0, 1]"*" :
>_j—1 Pij = 1 Vi € [n]} given an observed sequence x,
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(Actually, the posterior can of course be derived directly.)

Equation shows that we can view (X, : ¢ > 0) as coming from an urn model. Namely,
imagine we have n urns, each containing balls of n different colors: the i-th urn starts out
with «a;; balls of color j. (We allow fractional ball counts here.) Then describes the
sequence of colors drawn when, starting from urn X,, we draw a ball at random of color
X1 and replace two balls of that color in the urn, then move to the urn numbered X; and
repeat. Equivalently, we can also view this process as an edge-reinforced random walk on a
directed graph of n vertices with initial weight «;; on edge (i, j), where upon traversing any
edge we increase its weight by one.

Let’s turn our attention now to the main goal: the random stationary distribution 7. Since
P is almost surely irreducible, the ergodic theorem guarantees that as t — oo
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This motivates writing down one more expression: the probability of a given number of
occurrences of a state £ up to but not including time t, or equivalently, the number of
transitions out of k up to time t. Let

Pr(s,t) = {xé € [n]"*: Zcij(Xé) = s}

be the set of paths xf, for which out of the ¢ total transitions, s were from state k. Then
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follows from . We thus have a first characterization of the distribution of 7
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3 A conjecture

I think it’s uncontroversial to call (b)) unsatisfying. Fortunately, it’s rather easy to investigate
7 directly through simulation. We don’t even need to run the Markov chain; we just sample
P and find its left eigenvector 7 of eigenvalue 1, and plot the histogram of values of 7(1),
say. Below are these exact plots, where the Dirichlet distributions are identically symmetric,
that is a;; = o for all 4, j.
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The orange lines are density functions of Beta(na, n(n—1)«). These would be the marginals
7(1) if 7 ~ Dir(nal). The empirical densities seem to match these orange lines both as n
increases and as « increases, giving us the following conjecture.



Conjecture 1. Let P € R™*" with i.i.d. rows P; ~ Dir(al) for some o > 0. Then for 7 the
unique probability distribution such that m = 7P, we have

d(L(r), Dir(nal)) = 0

both as n — oo and as a — oo, for some distance between distributions d. Furthermore,
this convergence happens “quickly.”

A couple notes on this conjecture. First, I believe it’s natural to consider a fixed symmetric
Dirichlet as the distribution of i.i.d. rows of P, as a way to encode the idea that no state is
“special.” Secondly, a restricted version of this conjecture, with o = 1 fixed, has been made
by Bordenave, Caputo, and Chafai (2008]), but as far as I know no work has been published
towards its proof (or disproof).

4 The case of two states

In the case that n = 2, it’s straightforward to find the distribution of 7(1) explicitly. We
can write
|1=6, 6
P=['5" 1)

where 6, ~ Beta(aqi, a12) and 0y ~ Beta(ag;, ag) are independent. Some linear algebra
shows that
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It can be shown (see Pham-Gia (2000))) that 7(1) has density at ¢ of
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for t € (0,1/2] and
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for t € [1/2,1], where
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is the ordinary hypergeometric function. (As is common, if not standard, a™ refers to the
m-th rising factorial of a.)

At the moment, it is unclear to me whether the expression above is helpful in proving
Conjecture [1] for fixed n = 2 — probably in large part due to my unfamiliarity with the
hypergeometric function. Furthermore, I don’t see how the above might generalize to n > 2.
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5 Some relevant work and ideas

TODO
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