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1 Introduction

The purpose of this note is to have written down some (very preliminary) work on the
following problem. Consider a finite state space [n] = {1, . . . , n} equipt with a random
Markov transition kernel — that is, a random row-stochastic matrix P ∈ [0, 1]n×n. What
can we say about the the stationary distribution π? That a unique π exists almost surely
can be easily guaranteed by a natural choice of distribution on P , which I consider here.
Namely, we let the rows of P be independently Dirichlet.1

The rest of this note is organized as follows. I present the model and some of its easily
identifiable properties in Section 2, followed by the conjecture on the distribution of π in
Section 3. Next, Section 4 is devoted to explicitly finding the distribution of π when the
number of states is n = 2. For ease of exposition I relegate to Section 5 some discussion of
the fraction of relevant literature I have encountered so far [TODO] .

2 Some basic calculations

I apologize in advance to any reader for the slightly cumbersome notation.

With that caveat, let’s fully state the model. Considering fixed αij > 0 for i, j ∈ [n], the
rows of P are independently sampled as

Pi ∼ Dir(αi1, . . . , αin), ∀i ∈ [n].

We’ll let ν denote the distribution of P , and ρ the distribution of any of its rows. Given an
initial state X0 (possibly random), the process (Xt : t ≥ 0) is given by

P (Xt = j|Xt−1 = i, P = p) = pij.

To save on space, I will write X t
s for the sequence (Xs, . . . , Xt).

1I owe my thanks to Jim Pitman for suggesting this setup.
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“The most basic question” might be: how are sequences of states distributed? It is known
that in a mixture of Markov chains, the initial state X0 together with the set of transition
counts between pairs of states is a sufficient statistic (Diaconis and Freedman 1980). Letting
cij(x

t
s) = |{r ∈ [s, t − 1] : xr+1 = i, xr = j}| be the count of i-to-j transitions in xts, we see

this fact in our answer to the most basic question.

P
(
X t

1 = xt1|X0 = x0
)

=

∫
P
(
X t

1 = xt1|X0 = x0, P = p
)
ν(dp)

=
n∏
i=1

∫ n∏
j=1

p
cij(x

t
0)

ij ρ(dpi)

=
n∏
i=1

B(ci1(x
t
0) + αi1, . . . , cin(xt0) + αin)

B(αi1, . . . , αin)

(1)

Here, I’m using the following notation for the “multivariate Beta” function

B(α1, . . . , αm) =
Γ(α1) · · ·Γ(αm)

Γ(α1 + · · ·+ αm)
.

From (1) we can derive other expressions of interest, such as the predictive distribution

P
(
Xt+1 = xt+1|X t

0 = xt0
)

=
cxtxt+1(x

t
0) + αxtxt+1∑n

j=1 cxtj(x
t
0) + αxtj

(2)

and the posterior density for P with respect to Lebesgue measure λ on the set {p ∈ [0, 1]n×n :∑n
j=1 pij = 1 ∀i ∈ [n]} given an observed sequence xt0,

dν(p|xt0)
dλ

=
n∏
i=1

∏n
j=1 p

cij(x
t
0)+αij−1

ij

B (
∑n

k=1 cik(x
t
0) + αik)

. (3)

(Actually, the posterior can of course be derived directly.)

Equation (2) shows that we can view (Xt : t ≥ 0) as coming from an urn model. Namely,
imagine we have n urns, each containing balls of n different colors: the i-th urn starts out
with αij balls of color j. (We allow fractional ball counts here.) Then (2) describes the
sequence of colors drawn when, starting from urn X0, we draw a ball at random of color
X1 and replace two balls of that color in the urn, then move to the urn numbered X1 and
repeat. Equivalently, we can also view this process as an edge-reinforced random walk on a
directed graph of n vertices with initial weight αij on edge (i, j), where upon traversing any
edge we increase its weight by one.

Let’s turn our attention now to the main goal: the random stationary distribution π. Since
P is almost surely irreducible, the ergodic theorem guarantees that as t→∞∑n

j=1 cij(X
t
0)

t

a.s.→ π(i).
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This motivates writing down one more expression: the probability of a given number of
occurrences of a state k up to but not including time t, or equivalently, the number of
transitions out of k up to time t. Let

Pk(s, t) =

{
xt0 ∈ [n]t+1 :

n∑
j=1

cij(X
t
0) = s

}

be the set of paths xt0 for which out of the t total transitions, s were from state k. Then

P

(
n∑
j=1

ckj(X
t
0) = s

)
=

∑
xt0∈Pk(s,t)

P (X0 = x0)
n∏
i=1

B(ci1(x
t
0) + αi1, . . . , cin(xt0) + αin)

B(αi1, . . . , αin)
(4)

follows from (1). We thus have a first characterization of the distribution of π

P (π(k) ≤ r) = lim
t→∞

brtc∑
s=0

∑
xt0∈Pk(s,t)

P (X0 = x0)
n∏
i=1

B(ci1(x
t
0) + αi1, . . . , cin(xt0) + αin)

B(αi1, . . . , αin)
. (5)

3 A conjecture

I think it’s uncontroversial to call (5) unsatisfying. Fortunately, it’s rather easy to investigate
π directly through simulation. We don’t even need to run the Markov chain; we just sample
P and find its left eigenvector π of eigenvalue 1, and plot the histogram of values of π(1),
say. Below are these exact plots, where the Dirichlet distributions are identically symmetric,
that is αij = α for all i, j.
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The orange lines are density functions of Beta(nα, n(n−1)α). These would be the marginals
π(1) if π ∼ Dir(nα~1). The empirical densities seem to match these orange lines both as n
increases and as α increases, giving us the following conjecture.
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Conjecture 1. Let P ∈ Rn×n with i.i.d. rows Pi ∼ Dir(α~1) for some α > 0. Then for π the
unique probability distribution such that π = πP , we have

d(L(π),Dir(nα~1))→ 0

both as n → ∞ and as α → ∞, for some distance between distributions d. Furthermore,
this convergence happens “quickly.”

A couple notes on this conjecture. First, I believe it’s natural to consider a fixed symmetric
Dirichlet as the distribution of i.i.d. rows of P , as a way to encode the idea that no state is
“special.” Secondly, a restricted version of this conjecture, with α = 1 fixed, has been made
by Bordenave, Caputo, and Chafai (2008), but as far as I know no work has been published
towards its proof (or disproof).

4 The case of two states

In the case that n = 2, it’s straightforward to find the distribution of π(1) explicitly. We
can write

P =

[
1− θ1 θ1
θ2 1− θ2

]
where θ1 ∼ Beta(α11, α12) and θ2 ∼ Beta(α21, α22) are independent. Some linear algebra
shows that

π(1) =
θ2

θ1 + θ2
π(2) =

θ1
θ1 + θ2

.

It can be shown (see Pham-Gia (2000)) that π(1) has density at t of

tα21−1(1− t)α21+1B(α11 + α21, α12)2F1

(
α11 + α21, 1− α22;α11 + α21 + α12;

t
1−t

)
B(α11, α12)B(α21, α22)

for t ∈ (0, 1/2] and

t−(α11+1)(1− t)α11−1B(α11 + α21, α22)2F1

(
α11 + α21, 1− α12;α11 + α21 + α22;

t
1−t

)
B(α11, α12)B(α21, α22)

for t ∈ [1/2, 1], where

2F1(a, b; c;x) =
∞∑
m=0

a(m)b(m)xm

c(m)m!
=

∫ 1

0

ua−1(1− u)c−a−1(1− xu)−b

B(a, c− a)
du

is the ordinary hypergeometric function. (As is common, if not standard, a(m) refers to the
m-th rising factorial of a.)

At the moment, it is unclear to me whether the expression above is helpful in proving
Conjecture 1 for fixed n = 2 — probably in large part due to my unfamiliarity with the
hypergeometric function. Furthermore, I don’t see how the above might generalize to n > 2.
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5 Some relevant work and ideas

TODO
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