
Applying Grover’s Algorithm to Unique-k-SAT

Vasco Portilheiro

September 14, 2018

1 Introduction

Quantum computing is often lauded for its potential to greatly speed up to solutions to
known problems. Although successes such as Shor’s algorithm and Grover’s algorithm [3]
prove that quantum computing can accomplish what is classically impossible, it has proven
hard to generalize or innovate new such quantum computing techniques. There is thus
something to be said for exploring the application of these known quantum algorithms to
classically hard problems.

In this paper, we show how Grover’s algorithm can be applied to solve the Boolean
unique k-satisfiability problem (Unique-k-SAT): the problem of finding the unique satisfying
assignment to a formula in conjunctive normal form (CNF), where each clause contains at
most k of n Boolean variables. This problem is known to be NP-complete. We find that
applying Grover’s algorithm solves Unique-k-SAT with the competitive asymptotic running
time of O(2n/2), which is competitive with the current best runtime for deterministic and
randomized solution in the case where k = 3 of O(1.307n) [7], and does better than the best
known classical runtime for k = 4 of O(1.46981n) [4].

This paper will assume basic knowledge of computational complexity, as well as some
familiarity with quantum computing: the quantum circuit model and the Hadamard and
CNOT gates in particular. A good introduction to these topics can be found in the seminal
book of Nielsen and Chuang [5].

2 Unique-k-SAT

2.1 The problem

The general SAT problem is as follows. Given are n Boolean variables x1, . . . , xn, and a
formula

f(x1, . . . , xn) = (a1,1x1 ∨ · · · ∨ a1,nxn) ∧ · · · ∧ (am,1x1 ∨ · · · ∨ am,nxn), (1)

where by ai,j ∈ {−1, 0, 1} we denote that in each clause i (i.e. the each disjunction contained
in parentheses as written above) each variable xi may appear negated, not negated, or
not at all. (This is a slight abuse of notation, since if ai,j = 0, then simply replacing
ai,jxi = 0 = false into the formula will not give the correct result, but it gets the idea

1

across.) Each ai,jxi where ai,j 6= 0 — either a variable or its negation — is called a literal.
The formula f is thus the conjunction of m clauses, each of which are disjunctions of at
most n literals, and is therefore said to be in conjunctive normal form. The SAT problem
is that of determining whether there is an assignment to the variables x1, . . . , xn such that
f(x1, . . . , xn) evaluates to true.

In the k-SAT problem, each clause is limited to being a disjunction of at most k literals.
In this paper, we will focus on the Unique-k-SAT problem, in which we are promised that
the formula in uniquely satisfiable — that is, that f is true only for one set of values of
x1, . . . , xn. The problem is this case is that of finding the satisfying assignment.

2.2 Classical solutions

The naive solution to the Unique-k-SAT problem would be to simply iterate through all
possible variable assignments until the satisfying assignment is found. As each variable in
an assignment may be either true or false, there are 2n such assignments, and this algorithm
will thus take O(2n) time.

More advanced solutions are beyond the scope of this paper, although we will stop here
to mention that the seminal 1998 result of Paturi, Pudlak, Saks, and Zane [6] has been
improved upon recently to produce a deterministic solution to the Unique-3-SAT solution
that runs in O(1.307n) time [7], as well as a probabilistic solution to the 4-SAT that runs in
O(1.46981n) time [4].

3 Grover’s Algorithm

Grover’s algorithm was introduced in 1996 by Grover, who published it as “A fast quantum
mechanical algorithm for database search” [3]. We will present a brief overview of the
algorithm here, as well as a note on an often overlooked challenge one must solve to efficiently
apply the algorithm in practice.

3.1 The problem Grover’s solves

Although Grover himself described his algorithm as a kind of quantum database search,
this view may obfuscate some aspects of what the algorithm actually does. In particular,
given a function evaluatable on a quantum computer f : X → Y where |X| = N , and a
y ∈ Y , Grover’s algorithm finds with high probability x∗ ∈ X such that f(x∗) = y in runtime
O(N1/2).

What does it mean for f to be “evaluatable on a quantum computer?” Traditionally,
for the purposes of Grover’s algorithm we consider f to be a black-box, whose function
is unknown. In the quantum circuit model, we are given a control gate Uf implementing
|x〉 |y〉 7→ |x〉 |y ⊕ 1{f(x) = y}〉. This allows us to evaluate f on x by using an ancilla bit
(an “extra” qubit initialized to |0〉), by evaluating Uf |x〉 |0〉 = |x〉 |1{f(x) = y}〉.

2

3.2 The algorithm

This section’s purpose is to provide a description of the algorithm, and sketch how it is
that Grover’s algorithm achieves the desired result under some guarantees. The circuit for
Grover’s algorithm is as follows.

|0n〉 H⊗n
Uf

H⊗n 2 |0n〉 〈0n| − In H⊗n · · ·
|1〉 H

Note that here, n = log2N , such that the number of qubits on the first line is sufficient to
represent all N elements of X with unique binary indices. The combination of gates on the
top line following the Uf gate is called the Grover diffusion operator, for reasons that will

become clear. The combination of the Uf gate and the diffusion operator is repeated πN1/2

4

times, which is why the algorithm runs in O(N1/2) time.
The purpose of the first H⊗n gate on top line is to put the inputs to Uf in the uniform

superposition

H⊗n |0n〉 =
1√
N

∑
x∈X

|x〉 . (2)

The purpose of the Hadamard gate on the second line is more subtle. Recall that

H |1〉 =
|0〉 − |1〉√

2
= |−〉 . (3)

Thus, supposing that instead of a superposition the first line into Uf were just some |x〉, the
output of Uf would be

Uf |x〉 |−〉 =
1√
2
Uf |x〉 |0〉 −

1√
2
Uf |x〉 |1〉 (4)

=
1√
2
Uf |x〉 |f(x)〉 − 1√

2
Uf |x〉 |1⊕ 1{f(x) = y}〉 (5)

=

{
1√
2
|x〉 |1〉 − 1√

2
|x〉 |0〉 = − |x〉 |−〉 if f(x) = y

1√
2
|x〉 |0〉 − 1√

2
|x〉 |1〉 = |x〉 |−〉 if f(x) 6= y.

(6)

This is, Uf inverts the amplitude of the state x such that f(x) = y. Note that since we are
guaranteed that the second input to Uf is |−〉, we may consider Uf restricted to the first
qubit line, in which case we can write it as the operator

Uf = I − 2 |x∗〉〈x∗| , (7)

recalling that x∗ is the element of X such that f(x∗) = y. Since the input to Uf is the
uniform superposition in (2), rather than just one state |x〉, the actual state of the system
after Uf is a superposition where the probability of any x ∈ X is the same, but where the

3

amplitude of the x such that f(x) = y is negative, which we see by plugging in the state of
the first qubit line from (2):

Uf
1√
N

∑
x∈X

|x〉 =
1√
N

∑
x∈X

(I − 2 |x∗〉〈x∗|) |x〉 (8)

= − 2√
N
|x∗〉+

1√
N

∑
x∈X

|x〉 (9)

= − 1√
N
|x∗〉+

1√
N

∑
x 6=x∗
|x〉 . (10)

In order to understand the Grover diffusion operator, we will name the uniform super-
position over all states in (2) to be |s〉

|s〉 =
1√
N

∑
x∈X

|x〉 , (11)

noting that then the circuit above can be rewritten as below.

|0n〉 H⊗n
Uf

2 |s〉〈s| − In · · ·
|1〉 H

This follows from the simple calculation that the diffusion operator can be written

H⊗n(2 |0n〉〈0n| − I)H⊗n = 2H⊗n |0n〉〈0n|H⊗n −H⊗nIH⊗n = 2 |s〉〈s| − I. (12)

Applying the diffusion operator to the output of Uf gives us the result of one iteration of
Grover’s algorithm:

(2 |s〉〈s| − I)

(
−1√
N

+
1√
N

∑
x 6=x∗
|x〉

)
= (2 |s〉〈s| − I)(|s〉 − 2√

N
|x∗〉) (13)

= 2 |s〉 − |s〉 − 4

N
|s〉+

√
2

N
|x∗〉 (14)

=
N − 4

N
|s〉+

√
2

N
|x∗〉 , (15)

where we note that 〈s|x∗〉 = 1√
N

. Thus, the probability of obtaining |x∗〉 on measurement
of the first line increases with an iteration of Grover’s algorithm. While we will not prove
it here — as it is not the focus of this paper — this probability increases until the error
probability is O(1

N
) in πN1/2

4
such iterations.

3.3 Oracle construction

One often overlooked detail required to use Grover’s algorithm in practice is the implemen-
tation of the oracle Uf , as pedagogic literature often leaves it at “black box,” a fact which

4

leads [9] to criticize the eagerness to claim that Grover’s and similar algorithms efficiently
solve hard problems. This concern is not misplaced. Imagine it were hard, in a strict sense,
to implement the oracle. Perhaps constructing the oracle “gate” from some given function
requires checking how the function operates on each possible input. Then constructing the
oracle is as hard as solving the problem, and Grover’s algorithm gets us nowhere. In practice,
techniques exist for implementing oracles given a classical circuit implementing the oracle,
which we will apply to constructing the oracle for our problem.

4 Applying Grover’s Algorithm

4.1 Representing the problem

The representation of k-SAT for Grover’s algorithm is intuitive: for each Boolean variable
x1, . . . , xn, we have one qubit. In fact, initializing these each of qubits to |0〉, we get the
these Boolean variables are represented exactly by the first qubit line in the circuit diagram
above, initialized to |0n〉. With a correct implementation of the oracle, measuring this line
gives a assignment of 0 or 1 to each qubit, that is to each Boolean variable, which is with
high probability the satisfying assignment.

4.2 Constructing the oracle

To apply Grover’s algorithm, it remains to show how to construct the oracle gate Uf from
the CNF formula f . Recall that being in CNF, f is a conjunction of m clauses, where each
clause is a disjunction of at most k literals. It is this natural to have an ancilla qubit for
each clause, m total “clause bits.” We will construct a series of NOT and CNOT gates (how
exactly we will discuss shortly), which, supposing our input to Uf had only qubits in the pure
states |0〉 or |1〉, would set each such ancilla qubit to be 1 if its respective clause is satisfied
by the given inputs. Since f is the conjunction of these clauses, we will simply CNOT to
the output ancilla qubit — the second qubit line in the circuit above — as controlled by our
clause qubits. This gives us the following circuit for Uf so far, where |s〉 and |−〉 correspond
to the first and second qubit lines as prepared before the first application of Uf in the circuit
diagram above.

|s〉 clause1

· · ·

clausem

|0〉1 •
...

|0〉m •
|−〉

It thus remains to show how to set the m clause qubits. Note that we will also have to
“uncompute” the clause bits and the input |s〉, i.e. return them to their input states |0m〉
and |s〉, so as to correctly (and reversibly) implement Uf . This, however, will not be hard!
Turning our attention to the clauses, we recall that each clause ci is a disjunction of at p ≤ k

5

literals

ci = l1 ∨ · · · ∨ lp. (16)

However, disjunctions are not obviously amenable to quantum computation, as they are not
reversible. To overcome this, we recall that by De Morgan’s Law

ci = ¬(¬l1 ∧ · · · ∧ ¬lp). (17)

Thus, the clause’s truth value is just the negation of the CNOT gate applied to the literals’
negations. Thus, we proceed as follows. Since each literal is either a variable or its negation,
we simply set each qubits corresponding to variables in the clause to be negated if the literal
in negated in the clause. We then negate all these “literal-valued qubits,” use these as
controls for CNOT with the target on the correct clause qubit, then negate the result at
the clause qubit. Finally to uncompute, we perform the inverse of CNOT for each clause,
which is just the same CNOT, and then we negate once more all the qubits corresponding
to variables in the clause, then negate again each qubit whose literal was the negation of
its variable. Note that we can make the optimization of simply not negating the each qubit
whose variable’s literal is the negation of that variable.

The above procedure is certainly convoluted, but in practice it is a simple pattern, and
so is best explained by example. Suppose our formula were:

f = (x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x3). (18)

Then following the procedure above, our Uf gate would have the following circuit.

|x1〉 • X • X X • X •

|x2〉 X • X X • X

|x3〉 X • X • • • • X • X

|0〉1 X • X

|0〉2 X • X

|0〉3 X • X

|−〉

Note first how this circuit is symmetric about the point where we CNOT onto the |−〉
“output qubit.” The circuit after this point is clearly just the uncomputation, setting the
input to its initial state (but, recall that in the full Grover’s circuit, the amplitude of will
be x∗ negated). We now explain the gates before this point of symmetry. Since in the first
clause x2 and x3 are not negated, by (17) we must negate then before using the CNOT to
set the clause bit for clause 1. Also per (17), we negate this clause bit after the CNOT. In
clause 2, both x1 and x2 are negated, so we do not need to negate their qubit lines. This is
since the negation of their literals in the clause (the literals being themselves the negations
of the variables) are just the variables. We then apply the CNOT and negate the result at

6

the clause 2 qubit. For clause 3, we only need to negate the qubit line for x1, since x3 is
already negated in the clause.

Thus using the procedure outlined above, we have shown how to construct the correct
Uf gate. The astute reader, however, will notice that clauses of more then two literals
with require CNOT gates controlled by more than two qubits. While these are not part of
the “standard repertoire” of quantum gates, and constructing them explicitly is beyond the
scope of this paper, it is in fact possible to construct a k-controlled-NOT gate with only
k − 1 additional ancillae [8]. Thus, the for a formula f of m clauses, the oracle Uf can
be constructed using only m + k − 1 additional ancillae. Thus, our application of Grover’s
algorithm is efficient not only in runtime, but in space, with space usage being polynomial
in the formula size.

4.3 Quantum speedup

As stated previously, the runtime of our Grover’s algorithm solution to Unique-k-SAT runs
time O(2n/2) ≈ O(1.414n). This is comparable to the O(1.307n) runtime for solution to
Unique-3-SAT [7], and improves upon the best known runtime of classical algorithm for
4-SAT of O(1.46981n) [4].

5 Conclusion

The technique outlined here is by no means a novel idea, although this paper did take pe-
culiar care in construction of the oracle. Other, more sophisticated applications of Grover’s
algorithm and similar techniques to SAT problems include [2] and [1]. Since finding a sat-
isfying assignment is the same as showing that f is satisfiable, it would be interesting to
extend the result above to that of checking whether a formula is satisfiable, as in general
k-SAT. We expect that this should be natural, and that only the analysis would become
slightly more complex, as Grover’s algorithm can be extended to cases in which more than
one solution exist.

6 Acknowledgements

I would like to thank Leonardo P. G. de Assis for his class in Quantum Computation, which
has helped me delve deeper into my interest in quantum computing, and has given me the
opportunity to apply novel ways of thinking to problem solving.

References

[1] Sheng-Tzong Cheng and Ming-Hung Tao. “Quantum cooperative search algorithm for
3-SAT”. In: Journal of Computer and System Sciences 73.1 (2007), pp. 123–136. issn:
0022-0000. doi: https://doi.org/10.1016/j.jcss.2006.09.003. url: http:

//www.sciencedirect.com/science/article/pii/S0022000006001012.

7

[2] Evgeny Dantsin, Vladik Kreinovich, and Alexander Wolpert. “On Quantum Versions of
Record-breaking Algorithms for SAT”. In: SIGACT News 36.4 (Dec. 2005), pp. 103–
108. issn: 0163-5700. doi: 10.1145/1107523.1107524. url: http://doi.acm.org/
10.1145/1107523.1107524.

[3] L. K. Grover. “A fast quantum mechanical algorithm for database search”. In: eprint
arXiv:quant-ph/9605043 (May 1996). eprint: quant-ph/9605043.

[4] T. Hertli. “3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General”.
In: ArXiv e-prints (Mar. 2011). arXiv: 1103.2165 [cs.CC].

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. 10th. New York, NY, USA: Cambridge University
Press, 2011. isbn: 1107002176, 9781107002173.

[6] Ramamohan Paturi et al. “An Improved Exponential-time Algorithm for k-SAT”. In: J.
ACM 52.3 (May 2005), pp. 337–364. issn: 0004-5411. doi: 10.1145/1066100.1066101.
url: http://doi.acm.org/10.1145/1066100.1066101.

[7] Daniel Rolf. “Derandomization of PPSZ for Unique-k-SAT”. In: Theory and Applica-
tions of Satisfiability Testing. Ed. by Fahiem Bacchus and Toby Walsh. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 216–225. isbn: 978-3-540-31679-4.

[8] Siddhartha Sinha and Peter Russer. “Quantum computing algorithm for electromagnetic
field simulation”. In: 9 (June 2010), pp. 385–404.

[9] G. F. Viamontes, I. L. Markov, and J. P. Hayes. “Is Quantum Search Practical?” In:
eprint arXiv:quant-ph/0405001 (Apr. 2004). eprint: quant-ph/0405001.

8

