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1 Introduction

The purpose of this note is to serve as an accessible exposition of a method for proving
central limit theorems — the so-called “first projection” method. The idea is motivated
through the study of subgraph-counts in Erdös-Rényi random graphs, as developed in the
classic book of Janson,  Luczak, and Rucinski [1]. The language used therein is that of graph
functionals — real-valued functions of graphs depending only on their isomorphism class.
This is a nice bit of generality, which will allow us to use the idea of projection in the space
of functionals.

Here, we will be a bit more general. The projection idea in fact goes through for any random
variables, allowing us to prove the following result (a graph-less generalization of Theorem
6.39 from [1]).

Theorem 1. Consider random variables Ln with a central limit theorem, that is, with

Ln − E[Ln]

Var(Ln)1/2
d→ N (0, 1).

Any random variables Xn such that

Var(Xn) ∼ Cov(Xn, Ln)2

Var(Ln)

also obey the central limit theorem,

Xn − E[Xn]

Var(Xn)1/2
→ N (0, 1).

We prove this result in Section 2. Intuitively, we may view the result above as a tool for
“bootstrapping” central limit theorems; given some Xn of interest, we may prove a central
limit theorem by judiciously choosing Ln.

We will try to give a flavor of how this idea applies (quite nicely) to random graphs. In
Section 3 we sketch how one can apply Theorem 1 when Xn is the number of triangles in
Gn ∼ G(n, p).
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2 The first projection method

The main idea behind the proof of Theorem 1 is to approximate the Xn by some Yn that
are easier to study. If we can show that Xn and Yn are not too far apart, and we pick Yn to
have a central limit theorem, we might then expect to be able to prove one for Xn.

The tool that formalizes this intuition the following result, attributed in [1] to Cramér.
(Others may refer to this as a version of Slutsky’s theorem.)

Theorem 2. Consider two sequences of random variables Xn and Yn. If |Xn−Yn|
p→ 0 and

Yn
d→ Z, then Xn

d→ Z.

Proof. We will take as the definition of convergence in distribution Zn
d→ Z that for any con-

tinuous and bounded function f , E[f(Zn)]→ E[f(Z)]. Consider any such f , with bounding
constant B, and any ε > 0. Let δ > 0 be such that if |x − y| < δ then |f(x) − f(y)| < ε.
Now, note that we can bound

|E[f(Xn)− E[f(Yn)]| ≤ E[|f(Xn)− f(Yn)|]
= E[|f(Xn)− f(Yn)|1|Xn−Yn|<δ] + E[|f(Xn)− f(Yn)|1|Xn−Yn|≥δ]

≤ εP (|Xn − Yn| < δ) + 2BP (|Xn − Yn| ≥ δ)

≤ ε+ 2BP (|Xn − Yn| ≥ δ).

By the triangle inequality, we then have that

|E[f(Xn)]− E[f(Z)]| ≤ ε+ 2BP (|Xn − Yn| ≥ δ) + |E[f(Yn)]− E[f(Z)]|.

Sending n → ∞, the last two terms vanish by assumption. We thus have that for any
continuous and bounded f and any ε > 0,

lim
n→∞

|E[f(Xn)]− E[f(Z)]| < ε,

and letting ε→ 0, we have Xn
d→ Z.

With the result above in hand, the question becomes: what approximating Yn to choose?
The first projection method is one answer.

Consider the linear space L(L) = {aL+b : a, b ∈ R}, where L is some fixed random variable.
The first projection Y = ProjL(L)(X) ∈ L(L) of X (in L2(P)) minimizes the L2 distance
E[(X−Y )2], and is characterized as follows. (Our proof below is only a sketch, as the theory
here is not the focus of this note.)

Proposition 3. Consider random variables L and X, and let Y = ProjL(L)(X). Then
Y = aL+ b with

a =
Cov(X,L)

Var(L)

b = E[X]− aE[L].
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Furthermore, E[Y ] = E[X], and

E[(X − Y )2] = Var(X)− a2 Var(L) = Var(X)− Cov(X,L)2

Var(L)
.

Proof. Recall that Y minimizes E[(X − Y )2], and is thus in fact the solution to a linear
least-squares problem in L2(P). In particular, we may write

Y =
〈X,L〉
〈L,L〉

(L− E[L]) + E[X]

where 〈·, ·〉 = Cov(·, ·). The result follows immediately.

The result above suggests the following proof of Theorem 1.

Proof of Theorem 1. Suppose the random variables Ln obey a central limit theorem, and Xn

have

Var(Xn) ∼ Cov(Xn, Ln)2

Var(Ln)
.

Let Yn = ProjL(L)(Xn). By Proposition 3 and our assumption of Var(Xn), we have that
E[(Xn − Yn)2] = o(Var(Xn)), and thus

Xn − Yn
Var(Xn)1/2

p→ 0.

Noting that E[Yn] = E[Xn] and Var(Yn) = Cov(Xn,Ln)2

Var(Ln)
∼ Var(Xn),

Xn − E[Xn]

Var(Xn)1/2
∼ Yn − E[Yn]

Var(Yn)1/2
+

Xn − Yn
Var(Xn)1/2

.

Since Ln has a central limit theorem, so does Yn (being an affine transformation of Ln). Thus
by Theorem 2

Xn − E[Xn]

Var(Xn)1/2
d→ N (0, 1).

3 A central limit for triangle counts

We now apply Theorem 1 to show that the number of triangles Xn in Gn ∼ G(n, p) obeys a
central limit theorem. As mentioned previously we will use as our functional Ln the number
of edges in Gn. As Ln ∼ Bin(

(
n
2

)
, p), it is clear that

Ln − E[Ln]

Var(Ln)1/2
d→ N (0, 1)
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when n2p→∞ and n2(1− p)→∞. We thus show that in this regime,

Var(Xn) ∼ Cov(Xn, Ln)2

Var(Ln)
,

which by Theorem 1 will imply that

Xn − E[Xn]

Var(Xn)1/2
d→ N (0, 1)

when n2p→∞ and n2(1− p)→∞.

To see this, we first note that Var(Ln) =
(
n
2

)
p(1 − p). Observe next that fixing any u, v ∈

V (Gn) and writing 1uv for the indicator of (u, v) being an edge, we can write

Cov(Xn, Ln) =

(
n

2

)
Cov(Xn,1uv) =

(
n

2

)
p(E[Xn|1uv]− E[X]).

Therefore,
Cov(Xn, Ln)2

Var(Ln)
=

(
n
2

)
p(E[Xn|1uv]− E[X])2

1− p
.

It can be shown (by counting of triangles intersecting at a single edge), that the above is
asymptotically equal to the contribution to Var(Xn) of triangles overlapping in a single edge,(
n
2

)
(n− 2)(n− 3)p5. As this is the leading term in Var(Xn), the result holds.
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