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1 Introduction

The purpose of this note is to serve as an accessible exposition of a method for proving
central limit theorems — the so-called “first projection” method. The idea is motivated
through the study of subgraph-counts in Erdés-Rényi random graphs, as developed in the
classic book of Janson, Luczak, and Rucinski [1]. The language used therein is that of graph
functionals — real-valued functions of graphs depending only on their isomorphism class.
This is a nice bit of generality, which will allow us to use the idea of projection in the space
of functionals.

Here, we will be a bit more general. The projection idea in fact goes through for any random
variables, allowing us to prove the following result (a graph-less generalization of Theorem
6.39 from [1]).
Theorem 1. Consider random variables L, with a central limit theorem, that is, with
L, —E[L,]
Var(L,)!/?

Any random variables X,, such that

4 N(0,1).

Cov(X,, L,)?

X
Varl&) ~ )
also obey the central limit theorem,
X, — E[X,]
—_— 1).
Var(X,,)/? = N(0,1)

We prove this result in Section [2 Intuitively, we may view the result above as a tool for
“bootstrapping” central limit theorems; given some X,, of interest, we may prove a central
limit theorem by judiciously choosing L,,.

We will try to give a flavor of how this idea applies (quite nicely) to random graphs. In
Section [3| we sketch how one can apply Theorem [1| when X, is the number of triangles in
G, ~ G(n,p).



2 The first projection method

The main idea behind the proof of Theorem (1] is to approximate the X,, by some Y, that
are easier to study. If we can show that X, and Y,, are not too far apart, and we pick Y,, to
have a central limit theorem, we might then expect to be able to prove one for X,,.

The tool that formalizes this intuition the following result, attributed in [1] to Cramér.
(Others may refer to this as a version of Slutsky’s theorem.)

Theorem 2. Consider two sequences of random variables X, and Y, . If | X, —Y,| 20 and
Y, % 7, then X,, % 7.

Proof. We will take as the definition of convergence in distribution Z, 2 7 that for any con-
tinuous and bounded function f, E[f(Z,)] — E[f(Z)]. Consider any such f, with bounding
constant B, and any € > 0. Let § > 0 be such that if |z — y| < 0 then |f(z) — f(y)] < e.
Now, note that we can bound

[E[f(Xn) — E[f(Y)]l < E[|f(Xa) — f(Ya)l]
= E[[f(Xn) = fF(Ya) 1 ix,—vai<s] + E[[f(Xn) — f(Yn) 1%, v />6]
< P (|X, — Y,| < 8) + 2BP(|X,, — Y,| > 4)
< e+ 2BP(|X, — Y| > 0).

By the triangle inequality, we then have that
E[f(X.)] = E[f(2)]] < e+2BP(|X, — Ya| = 6) + [E[f(Ya)] — E[f(Z)]]

Sending n — oo, the last two terms vanish by assumption. We thus have that for any
continuous and bounded f and any € > 0,

lim [E[f(X,)] = E[f(Z)]] <e,

n—oo

and letting ¢ — 0, we have X, LNy4 O

With the result above in hand, the question becomes: what approximating Y,, to choose?
The first projection method is one answer.

Consider the linear space L(L) = {aL+b: a,b € R}, where L is some fixed random variable.
The first projection Y = Proj.y(X) € L(L) of X (in L?*(IP)) minimizes the L* distance
E[(X —Y)?], and is characterized as follows. (Our proof below is only a sketch, as the theory
here is not the focus of this note.)

Proposition 3. Consider random variables L and X, and let Y = Proj)(X). Then
Y =alL + b with
~ Cov(X, L)
~ Var(L)
b=E[X] - aE[L].



Furthermore, E[Y] = E[X], and

~ Cov(X, L)?

E[(X ~¥)"] = Var(X) — o’ Var(L) = Var(X) - =55

Proof. Recall that Y minimizes E[(X — Y)?], and is thus in fact the solution to a linear
least-squares problem in L?(P). In particular, we may write

Y = %(L — E[L)) + E[X]

where (-, ) = Cov(-,-). The result follows immediately. O
The result above suggests the following proof of Theorem [I}

Proof of Theorem[1. Suppose the random variables L, obey a central limit theorem, and X,

have
Cov(X,, L,)?

Var(L,)

Let Y, = Proj;;)(X,). By Proposition |3 and our assumption of Var(X,), we have that
E[(X, — Y,)?] = o(Var(X,,)), and thus

Var(X,,) ~

Xo = Yo 2,
Var(X,,)/2 '

Noting that E[Y,,] = E[X,,] and Var(Y,,) = %’}43)2 ~ Var(X,),

X, —E[X,] Y,-E[Y, X.,-Y,
Var(X,)2 ~ Var(Y,)12  Var(X,)/?’

Since L, has a central limit theorem, so does Y,, (being an affine transformation of L,,). Thus

by Theorem
X, —E[X,] 4
— 1).
Var(X, )12 5 N(0,1)

3 A central limit for triangle counts

We now apply Theorem (1| to show that the number of triangles X,, in G,, ~ G(n,p) obeys a
central limit theorem. As mentioned previously we will use as our functional L,, the number
of edges in G,,. As L, ~ Bin((}), p), it is clear that

L, —E[L)] 4
Var(L,) 12 = N(0,1)



when n?p — oo and n*(1 — p) — oo. We thus show that in this regime,

Cov(X,, L,)?

Var(X,,) ~ )
ar(Xn) ~ (L)
which by Theorem [1] will imply that
X, —E|X,
Xo] 4 (0,1)

Var(X,)1/?

when n?p — oo and n?(1 — p) — oo.

To see this, we first note that Var(L,) = (3)p(1 — p). Observe next that fixing any u,v €
V(G,) and writing 1, for the indicator of (u,v) being an edge, we can write

Cov(X,, L) = (Z) Cov(Xy, Lyy) = (”

) ) P(ELX, 1] - BLX).

Therefore,

Cov(Xn, Ln)* _ (5)P(E[Xn|Lu] — E[X])?
Var(L,) 1-p '
It can be shown (by counting of triangles intersecting at a single edge), that the above is

asymptotically equal to the contribution to Var(X,,) of triangles overlapping in a single edge,
(5)(n —2)(n — 3)p°. As this is the leading term in Var(X,), the result holds.
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