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1 Introduction

This main goal of this note is to attempt to answer a question posed by Persi Diaconis in a
lecture for his “Topics in Combinatorics” course. The question is motivated by the following
observation.

Proposition 1. Let X1, X2, . . . be independent Bernoulli random variables, where each Xi

is 1 with probability 1/i. Then
∑∞

i=1XiXi+1
d
= Poisson(1).

We will review a proof of this result in Section 2, which will reveal the key observation —
the sum can be related the number of fixed points in a random permutation on n elements,
which has a limiting Poisson(1) distribution as n→∞.

It is also known that the number of transpositions in a random permutation has a limiting
Poisson(1/2) distribution. We should thus expect to find a similar representation of the
Poisson(1/2). In this note, we show that, in fact, the following is true.

Proposition 2. With X1, X2, . . . as in Proposition 1, and denoting Xi = 1 − Xi, we have∑∞
i=1XiXi+1Xi+2

d
= Poisson(1/2).

Note that throughout, we will use Xi and Xi with the meanings above.

This result is certainly not new, being a special case of one for general Poisson(1/k) dis-
tributions, which can be proved by the Feller coupling (cf. Najnudel and J. Pitman [2]).1

In this note, we provide a different argument via random permutation matrices. We begin
by reviewing a version of this argument for the Poisson(1) case, then generalize it to the
Poisson(1/2), and conclude by proposing a similar approach to the general Poisson(1/k)
case.

1For a non-combinatorial proof, see Sethuraman and Sethuraman [3].
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2 A random matrix argument for the Poisson(1) case

In this section, we review a proof of Proposition 1. We will begin by outlining the key
intermediate results before going into their respective proofs.

As mentioned above, the proof relies on the fact that the number of fixed points in a random
permutation has a limiting Poisson(1) distribution. This is in fact a special case of the
following classical result.

Proposition 3. Let σ ∈ Sn be a uniformly random permutation of n elements, and let
ai(σ) denote the number of cycles in σ of length k. The cycle counts ak(σ) have limiting
Poisson(1/k) limiting distributions as n→∞.

This can be seen as a fact about the traces of random permutation matrices. Letting ρ(σ)
denote the usual matrix representation of σ, it is easy to see that the number of element
which are in cycles of length dividing k is given by Tr(ρ(σ)k). In particular, the above result

says that for a random σ ∈ Sn, we have Tr(ρ(σ))
d→ Poisson(1) as n→∞.

Given the result above, to prove Proposition 1 it remains to show Tr(ρ(σ))
d→
∑∞

i=1XiXi+1.
This is a direct consequence of the following result.

Proposition 4. For a uniformly random σ ∈ Sn, Tr(ρ(σ))
d
= Xn +

∑n
i=1XiXi+1.

For Proposition 3, we follow an argument of Diaconis and Shashahani [1]. We will strive to
be scrupulous and fill in details, beginning with the following.

Lemma 5. Let α1, . . . , αn be non-negative integers with
∑n

k=1 αk = n. The number of
permutations σ ∈ Sn such that ak(σ) = αk for all k ∈ [n] is

n!
n∏
k=1

1

αk!kαk
.

Proof. This (among other ways) can be seen by an elementary counting argument. There
are n! permutations in Sn, each of which can be represented as a tableau. These tableaux
are unique only up to cyclic shifts within rows and switching rows of the same size. Each of
the αk rows of size k can be shifted k times, and there are αk! permutations of such rows,
giving the above result.

Proof of Proposition 3. Let us denote the cycle generating functions :

Cn(x1, . . . , xn) =
1

n!

∑
σ∈Sn

n∏
k=1

x
ak(σ)
k

C(t)(x1, x2, . . .) =
∞∑
n=0

tnCn(x1, . . . , xn).
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Note that we have

Cn(x1, . . . , xn) =
1

n!

∑
{αk}

|{σ ∈ Sn : ak(σ) = αk ∀k}|

(
n∏
k=1

xαk
k

)

=
∑

{αk:
∑

k kαk=n}

n∏
k=1

xαk
k

αk!kαk
,

the second equality holding by our previous result. Thus,

C(t)(x1, x2, . . .) =
∞∑
n=0

tn
∑

{αk:
∑

k kαk=n}

n∏
k=1

xαk
k

αk!kαk

=
∞∏
k=1

∞∑
αk=0

(xkt
k/k)αk

αk!

=
∞∏
k=1

exkt
k/k.

We will use our two different expressions for C(t)(x1, x2 . . .) to derive the result. In particular,
we will show that for a uniformly random σ ∈ Sn and Y ∼ Poisson(1/k), for any cycle length
k and j ≤ n/k, we have E[ak(σ)(j)] = E[Y(j)]. That is, the j-th falling factorial moments are
equal. It follows that the first n moments are in fact equal.

To see this, write x for xk and fix all other xi = 1, and note that E[xak(σ)] = Cn(x). It follows
that

E[ak(σ)(j)] =
dj

dxj
Cn,k(x)

∣∣∣∣
x=1

and furthermore
dj

dxj
C(t)(x)

∣∣∣∣
x=1

=
∞∑
n=0

tnE[ak(σ)(j)].

On the other hand, we have

C(t)(x) =
e

tk

k
(x−1)

1− t
.

Differentiating, we obtain

∞∑
n=0

tnE[ak(σ)(j)] =
(tk/k)j

1− t
=

(
1

k

)j ∞∑
n=kj

tn,

finishing the proof.

Our proof of Proposition 4 relies on the following representation of a uniformly random
permutation.
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Lemma 6. For i ∈ {2, . . . , n} and j ∈ [n − 1], let X
(j)
i ∼ Ber(1/i) be independent and let

T
(j)
i be the n× n matrix representing the transposition (i− 1, i) if X

(j)
i = 0, and the identity

if X
(j)
i = 1. Then

(T
(1)
2 · · ·T (1)

n )(T
(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 )

is the matrix representation of a permutation uniformly random on Sn.

Proof. Observe that T
(j)
2 · · ·T

(j)
i sends index i to i′ (where i′ ≤ i) exactly when all trans-

positions T
(j)
i , . . . , T

(j)
i′+1 are non-trivial and T

(j)
i′ is the identity. This is true exactly when

Xi · · ·Xi′+1Xi′ = 1, which occurs with probability i−1
i
i−2
i−1 · · ·

i′

i′+1
1
i′

= 1
i
. That is, i is uni-

formly random in [i]. The result holds by induction.

We proceed now by showing that the above product representation of a uniform permutation
has trace equal in distribution to Tr(Tn · · ·T2), for Ti as above. (We omit the superscripts
(j) where they may be fixed without affecting the end result.) Proposition 4 then follows
from the observation that Tr(ρ(Tn · · ·T2)) = Xn +

∑n
i=1XiXi+1.

Proof of Proposition 4. For T
(j)
i as in Lemma 6, we show

Tr
(

(T
(1)
2 · · ·T (1)

n )(T
(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 )

)
d
= Tr(Tn · · ·T2).

We show this by iterating a procedure of “cycling” the transpositions and “eliminating” (i.e.
replacing by an expression equal in distribution), repeated n− 1 times.

Note that the right hand side above, by the cyclic property of trace, is equal to

Tr
(

(T (1)
n )(T

(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 )T

(1)
2 · · ·T

(1)
n−1

)
.

Noting that, by Lemma 6, (T
(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 ) is the representation of a uniformly

random element of Sn−1, the above is equal in distribution to

Tr
(

(T (1)
n )(T

(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 )

)
.

The above is what we call the “elimination” step. Now, since the transposition matrices
T

(2)
2 · · ·T

(2)
n−2 do not interact with indices n − 1 and n, they commute with T

(1)
n , and the

above is thus equal to

Tr
(

(T (1)
n )(T

(2)
n−1)(T

(3)
2 · · ·T

(3)
n−2) · · · (T

(n−1)
2 )T

(2)
2 · · ·T

(2)
n−2

)
.

The “elimination” argument applies once more, showing the above is equal in distribution
to

Tr
(

(T (1)
n )(T

(2)
n−1)(T

(3)
2 · · ·T

(3)
n−2) · · · (T

(n−1)
2 )

)
.

It is evident that this procedure may be repeated until we obtain the expression

Tr(T (1)
n · · ·T

(n−1)
2 ).
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3 Generalizing to Poisson(1/2)

We now generalize the argument made above to prove Proposition 2. The obvious step to
make is to write an expression for a2(σ) in terms of ρ(σ), and prove it converges in distribution
to
∑∞

i=1XiXi+1Xi+2. But in fact, it is easy to see that a2(σ) = 1
2
(Tr(ρ(σ)2) − Tr(ρ(σ))).

(That is, count the number of elements in cycles of lengths dividing 2, subtract the number
of fixed points, and divide the result by two.) Proposition 2 thus holds given the following
result.

Proposition 7. For a uniformly random σ ∈ Sn,

Tr(ρ(σ)2)
d
= Xn + 2Xn−1Xn +

n−2∑
i=1

XiXi+1 + 2XiXi+1Xi+2.

Proof. As before, write ρ(σ) as a product of transposition matrices

ρ(σ) = (T
(1)
2 · · ·T (1)

n )(T
(2)
2 · · ·T

(2)
n−1) · · · (T

(n−1)
2 ).

We claim that Tr(ρ(σ)2)
d
= Tr ((Tn · · ·T2)2) . In fact, essentially the same argument as in the

proof of Proposition 4 applies; the only difference is that both copies of transpositions with
the same superscript index are “cycled” through the product at once and (crucially!) both
copies are then “eliminated” together. As an example, we work through the case n = 4:

Tr
(

(T
(1)
2 T

(1)
3 T

(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )(T

(1)
2 T

(1)
3 T

(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )
)

= Tr
(

(T
(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )(T

(1)
2 T

(1)
3 T

(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )(T

(1)
2 T

(1)
3 )
)

d
= Tr

(
(T

(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )(T

(1)
4 )(T

(2)
2 T

(2)
3 )(T

(3)
2 )
)

= Tr
(

(T
(1)
4 )(T

(2)
3 )(T

(3)
2 )(T

(2)
2 )(T

(1)
4 )(T

(2)
3 )(T

(3)
2 )(T

(2)
2 )
)

d
= Tr

(
(T

(1)
4 )(T

(2)
3 )(T

(3)
2 )(T

(1)
4 )(T

(2)
3 )(T

(3)
2 )
)
.

Letting again each transposition Ti be the identity when Xi = 1, one may verify that

Tr
(
(Tn · · ·T2)2

)
= X2

n + 2Xn−1Xn
2

+
n−2∑
i=1

X2
iX

2
i+1 + 2XiXi+1

2
Xi+2.

Noting that Xi ∈ {0, 1} and that we may thus ignore exponents finishes the proof.

4 Concluding remarks

It should be possible to generalize this proof to a representation of any Poisson(1/k) variable,
e.g. by observing the recurrence ak(σ) = 1

k
(Tr(ρ(σ)k)−

∑
j|k jaj(σ)), where the sum is over
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divisors j 6= k of k. As a step in this direction, one should be able to directly generalize the

“cycling” argument to show Tr(ρ(σ)k)
d
= Tr

(
(Tn · · ·T2)k

)
. Ideally, however, a less mechanis-

tic argument than the one by “cycling-and-elimination” may be made (perhaps via character
theory).
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