
An Exploration of Worst-Case Deletion Correcting
Codes

Bora Uyumazturk∗1 and Vasco Portilheiro†1

1Department of Computer Science, Stanford University

August 17, 2019

Abstract

In this survey, we cover several results concerning codes capable of correcting ad-
versarial deletions. We begin by introducing the problem, and exploring some of the
related combinatorial structure of strings. We then prove an asymptotic (in terms of
block-length) bound on the size of a binary code correcting 1-deletion due to Leven-
shtein, and subsequently show that Varmshamov-Tenengoltz codes meet this bound.
We then turn to the problem of correcting more than one deletion. Here, we explore
Kulkarni et. al.’s work on how casting the problem in the language of hypergraphs
gives an explicit upper bound on the size of code correcting a constant number of
deletions. Shifting to the problem of correcting a fraction of deletions, we present a
recent construction by Bukh, Guruswami, and H̊astad of positive rate codes correcting
a
√

2− 1 ≈ 0.4142 fraction of deletions, which significantly closes in on the best known
upper bound of 1/2.

1 Introduction

In recent years, there has been flurry of research regarding codes capable of correcting ad-
versarial deletions. First studied in the 1960’s by Levenshtein, these codes are still relatively
poorly understood. For example, the maximum fraction of deletion for which there exist
positive rate codes is still unknown (though we present recent progress towards answering
this question in the last section of this survey). Even for a constant number of deletions,
optimal codes remain elusive: high rate construction are typically lack generalizability due
to the complex combinatorial structure of string subsequences.

Recent theoretical interest has also been driven by new applications, such as DNA based
coding and unreliable packet-based communication. While it is also reasonable in such
settings to model the deletion channel probabilistically, e.g. with a fixed probability of

∗Equal contribution. Contact: yuyumaz@stanford.edu.
†Equal contribution. Contact: vascop@stanford.edu.

1

mailto:yuyumaz@stanford.edu
mailto:vascop@stanford.edu

deletion for each symbol in the input string, in this paper we are concerned with absolute
guarantees on whether the input can be recovered. (For more on deletion channels in general,
including probabilistic models, see Mitzenmacher’s extensive survey [8].)

As with general error correcting codes, the goal is to create a codebook C ⊆ Σn, where Σ
is a finite alphabet, which should allow us to correct some number d ≤ n deletions. That is,
given a possible corrupted message x̃ we must be able to recover the intended message x, for
any x ∈ C. It is easy to see that this is only possible if each codeword (element of the code)
deletes to a distinct set of strings. This motivates the following definitions.

Definition 1. The d-deletion ball Dd(x) of a string x ∈ Σn consist of all strings reachable
from x by d deletions, i.e. all length n− d substrings of x:

Dd(x) = {y ∈ Σn−d : y ≺ x},

Note that by y ≺ x we mean that y is a substring (or subsequence) of x, i.e. the characters
in y occur in the same order in x, but not necessarily consecutively. When referring to
substring of consecutive symbols, we will instead use the term subword.

Definition 2. A d-deletion correcting code of block-length n (or, simply, a d-deletion code)
C ⊆ Σn is a set of length n strings whose d-deletion balls are all distinct. That is, for any
x, y ∈ C with x 6= y,

Dd(x) ∩Dd(y) = ∅.

We may also refer to a d-deletion code of length n over some alphabet Σ as an (n, d,Σ)
deletion code. While in general we want to maximize d while minimizing n, best tradeoff is
as of yet unknown. We will begin by exploring the case where d = 1. We derive an asymptotic
bound on n in this case, originally due to Levenshtein [5], and then describe Varshamov-
Tenengoltz codes, which meet this bound. We will then describe several approaches to the
d ≥ 2 case.

2 The Combinatorial Structure of 1-deletion and 1-

insertion

We begin by analyzing the size and distribution of d-deletion balls. Here, we will restrict
ourselves to the binary alphabet Σ = F2, and single deletions, i.e. d = 1. (We will treat some
of the work for d > 1 in later sections.) We begin by asking two fundamental questions.

Question 1. Consider any binary string x ∈ Fn2 . How many distinct strings can we get to
by deleting a single symbol, or bit, from x? That is, what is the size of the 1-deletion ball of
x, |D1(x)|?

Question 2. Consider any binary string y ∈ Fn−1
2 . How many length n strings could y be

arrived at by deleting a single bit? That is, how many elements have y in there 1-deletion
balls, i.e. how big is {x ∈ Fn2 : y ∈ D1(x)}?

2

Surprisingly, the answer to the second question above has a much simpler answer than the
first one. However, it will point us towards the answer to the first — the size of a 1-deletion
ball — which will prove much more useful for results to follow.

Some intuition towards answering these question can be gained by examining the diagram
below. In particular, we have a tree whose n-th level contains the binary length n strings.
Edges in the tree go from length n strings to the length n− 1 strings reachable by a single
deletion.

∅

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Looking at this tree, one might hypothesize that every node at the n-th level connects “down”
to n+ 2 nodes in the (n+ 1)-th level. This would answer our second question above: every
length n− 1 string is a 1-deletion away from n+ 1 distinct strings of length n. It turns out
that this is in fact true. Furthermore, the proof contains an idea that will help us answer
our other, more useful question.

The crucial insight will be to look at runs of consecutive bits in our string. For example,
consider the string 000111100. This string consists of three total runs: a run of 0’s of length
3, a run of 1’s of length 4, and a run of 0’s of length 2. For the sake of convenience, we define
the number of runs function.

Definition 3. For any alphabet Σ, the number of runs function r : Σ∗ → N gives for any
string the number of distinct runs of consecutive symbols in that string.

Lemma 2.1. For n ≥ 1, for every y ∈ Fn2 , we have

|{x ∈ Fn+1
2 : y ∈ D1(x)}| = n+ 2.

Proof. Consider any y ∈ Fn2 . Let ri be the length of the i-th run, such that

r(y)∑
i=1

ri = n.

3

We want to count the number of strings that y is a 1-deletion away from. Equivalently, we
want to count how many distinct strings we can reach from y by inserting a single bit. We
observe that by inserting a bit, we can never decrease the number of runs. We will thus
consider two cases: the length n + 1 strings we can reach that also contain r(y) runs, and
those that contain more than r(y) runs.

It is clear that when inserting a bit, the number of runs can only remain the same if the
bit is being inserted into a run of that same bit. That is, if the bit being inserted is a 1
(respectively 0), the number of runs remains the same if and only if it is being inserted into
a run of 1’s (respectively 0’s). Since y contains r(y) runs, there are r(y) strings of length
n+ 1 we can reach by a single insertion that also contain r(y) runs.

There are two ways to increase the number of runs by inserting a bit. One is prepending
a bit to the beginning of the string which differs from the first run, or append a bit at the
end that differs from the last run, thus increasing the number of runs by one. This gives two
more strings reachable from y by 1-insertion. The other way to increase the number of runs
is by inserting a bit into a run of the opposite bit, e.g. inserting a 1 into a run of 0’s. Note
here that we restrict to inserting between two bits of the existing run, and not at the end
(or beginning) of the existing run, as this would simply extend the next (or prior) run. For
each run i, of length ri, there are ri − 1 positions “between” the bits in the run, and thus
ri − 1 strings reachable in this way by 1-insertion from y.

Summing up the contribution from each of these cases, we get a total number of strings
reachable by 1-insertion

r(y) + 2 +

r(y)∑
i=1

ri − 1 = r(y) + 2 + n− r(y) = n+ 2.

This proof motivates looking at strings from the perspective of runs of bits. This lens
directly helps answer our first question above.

Lemma 2.2. For any alphabet Σ and any x ∈ Σn (n ≥ 1), the size of the 1-deletion ball is
the number of runs r(x). That is |D1(x)| = r(x).

Proof. The proof of this fact comes simply by observing that within a single run, it doesn’t
matter which particular symbol is deleted: the resulting length n − 1 string is the same.
On the other hand, every single deletion must happen withing some run. Therefore, there
are exactly the same number of distinct length n− 1 substrings of x as there are runs, and
|D1(x)| = r(x).

Having established the size of single deletion balls, we ask a natural follow-up question,
the answer to which again proves useful in the subsequent sections. In particular, for a given
length n, how many strings are there of m runs? In answering this question, we again restrict
ourselves to the binary case, obtaining the following result, initially due to Levenshtein [5].

Lemma 2.3. In Fn2 the number of strings with m runs is

|{x ∈ Fn2 : r(x) = m}| = 2

(
n− 1
m− 1

)
.

4

Proof. Consider all strings of m runs beginning with a run of 0’s. The number of such strings
is the number of ways to pick the m−1 boundaries between the runs. The possible positions
for these boundaries are the n − 1 positions between n total symbols. There are therefore(
n− 1
m− 1

)
strings of length n that begin with 0 and contain m runs. Repeating this logic to

count the strings beginning with 1 completes the proof.

The result above is useful in proving a bound on the size of a binary 1-deletion code
asymptotic in the block-length, which gives us a way of evaluating whether a given family
of binary deletion codes is “asymptotically optimal.” In fact, this bound will allow us to
demonstrate that one particular family of codes is optimal in this sense. For the rest of this
survey, let C(n, d, q) be an optimal (i.e. of largest cardinality) d-deletion code of length n
and alphabet size q. The following bound for the case q = 2 and d = 1 is due to Levenshtein
[5].

Theorem 2.4.

|C(n, 1, 2)| ∼ 2n

n
, (1)

as n→∞.

The proof of this theorem will be done in two parts. We will first prove that 2n

n
is an

asymptotic upper bound on |C(n, 1, 2)|. It will then remain to prove the existence of codes
achieving this upper bound. One such family of codes is Varshamov-Tenengoltz codes, which
are the subject of the next section. We thus defer the proof of Theorem 2.4 until the next
section, and here only prove the upper bound statement.

Lemma 2.5.

|C(n, 1, 2)| . 2n

n
, (2)

as n→∞.

Proof. Fix some n and let C = C(n). We now partition the codewords in C by the sizes of
their 1-deletion balls, as follows. First, we let C1 by the set of codewords with approximately
n/2 runs. In particular,

C1 = {x ∈ Fn2 :
n

2
−
√
n log n ≤ r(x) ≤ n

2
+
√
n log n}.

Let C2 = C \ C1 be the remaining codewords. We will now show that for large n, most
codewords are in C1, which in turn is bounded above by 2n

n
.

To find the size of C1, note first that by assumption the 1-deletion balls of the codewords
in C are distinct, since C is a 1-deletion code. Thus, the size of C1 cannot be larger than
the maximum number of deletion balls which can be “packed” into Fn−1

2 :

|C1| ≤
2n−1

minx∈C1 |D1(x)|
≤ 2n−1

n
2
−
√
n log n

.
2n

n
.

5

The remaining codewords in C are those in C2. The number of these codewords is given
by counting how many codewords there are for each of the remaining number of runs

|C2| ≤
n
2
−
√
n logn∑

m=1

2

(
n− 1
m− 1

)
+

n∑
m=n

2
+
√
n logn

2

(
n− 1
m− 1

)

≤ 2

n
2
−
√
n logn∑

m=1

2

(
n− 1
m− 1

)
� 2n

n
.

3 Varshamov-Tenengoltz Codes

Varshamov-Tenengoltz codes form a family of 1-deletion codes. For a given block length n,
there are parametrized by a checksum value a ∈ {0, . . . , n}. They are defined as follows.

Definition 4. For a given n ∈ N we define the Varshamov-Tenengoltz code of checksum a
to be

V Ta(n) = {c ∈ Fn2 :
n∑
i=1

ici ≡ a mod n+ 1}.

We first note the following fact, that shows that VT codes indeed asymptotically achieve
the bound in Lemma 2.5.

Lemma 3.1. As n→∞, the largest VT code of block length n is asymptotically of size 2n

n

Proof. Since the n + 1 different VT codes of size n partition Fn2 , at least one of them must
have size at least 2n

n+1
, by the pidgeonhole principle. (For a fully rigorous treatment of the

size of VT codes, see Sloane’s indispensable survey on 1-deletion codes [11]. It turns out
that the maximum is achieved by a = 0.)

It thus remains to show that VT codes can in fact correct 1-deletions. We will first
present the algorithm (Algorithm 1), and then prove that this algorithm is correct.

Algorithm 1: VT 1-deletion correction

Data: n ∈ N, a ∈ {0, . . . , n}, c̃ ∈ Fn−1
2 such that c̃ ∈ D1(c) for some c ∈ V Ta(n)

Result: c ∈ V Ta(n) such that c̃ ∈ D1(c)
begin

s←−
∑n−1

i=0 ic̃ mod n+ 1
∆←− a− s mod n+ 1
if ∆ ≤ wt(c̃) then

c1, c2 ←− CountFromRight(c̃, 1,∆)
b←− 0

else
c1, c2 ←− CountFromRight(c̃, 0, n−∆)
b←− 1

c←− c1bc2

6

Note that we use c1bc2 to denote the concatenation of the three strings, and wt(·)
to denote the function counting the number of 1’s in a string (i.e. the weight). By
CountFromRight(c̃, e,∆) we mean a subroutine returning the given string c̃ split into two
parts c1 and c2 such that c2 contains only ∆ occurrences of the bit e. (Such a subroutine
would reasonably run in time O(n).)

The proof of correctness of Algorithm 1 is originally due to Levenshtein [5].

Theorem 3.2. Given c̃ ∈ Fn−1
2 such that c̃ ∈ D1(c) for some c ∈ V Ta(n), Algorithm 1

correctly identifies c.

Proof. Consider any c ∈ V Ta(n). Let c̃ ∈ Fn−1
2 be the string obtained by deleting the single

bit b from position p in c. That is, if we write c as

c = c1, c2, . . . , cp−1, cp, cp+1, . . . , cn−1, cn

we can correspondingly write c̃ as

c̃ = c1, c2, . . . , cp−1, cp+1, . . . , cn−1, cn.

Let R1 = wt(cp+1, . . . , cn) be the number of 1’s to the right of the deletion, and similarly let
R0 = n− p− R1 be the number of 0’s to the right of the deletion. As in the algorithm, let
s ≡

∑n−1
i=1 ic̃ mod n + 1 be the checksum of c̃, and let ∆ ≡ a − s mod n + 1. Note that

∆ = pb+R1, as follows (for simplicity, we drop the mod n+ 1 here):

∆ ≡ a−
n−1∑
i=1

ic̃i

≡ a−

(
p−1∑
i=1

ic̃i +
n−1∑
i=p

ic̃i

)

≡ a−

(
p−1∑
i=1

ici +
n∑

i=p+1

(i− 1)ci

)

≡ a−

(
p−1∑
i=1

ici +
n∑

i=p+1

ici −
n∑

i=p+1

ci

)

≡ a−

(
p−1∑
i=1

ici +
n∑

i=p+1

ici −R1

)

≡ a+R1 −

(
n∑
i=1

ic1 − pb

)
≡ pb+R1.

We now proceed by cases on the value of b.
Case b = 0. Note that in this case ∆ = R1 ≤ wt(c̃). Therefore, the algorithm will be in
the correct branch of the if-statement, and correctly count R1 1’s from the end of c̃ before
inserting a 0.

7

Case b = 1. Note that in this case ∆ = p+R1 > wt(c̃), since the number of 1’s before index
p in c must be strictly less than p. This again shows that the algorithm will be in the correct
branch of the if statement. Now note that

∆ = p+R1 = p+ (n− p−R0) = n−R0,

and so R0 = n − ∆. So the algorithm will correctly count R0 0’s from the end of c̃ before
inserting a 1.

Thus, VT codes can correct 1-deletions (in linear time). This completes the proof of
Theorem 2.4 by showing that VT codes are asymptotically optimal 1-deletion codes.

4 Upper Bounds on d Deletion codes for d ≥ 1

4.1 From deletion, to hypergraphs, to linear programs

Levenshtein’s asymptotic upper bound above relies critically on the simple expression of the
size of deletion balls in terms of the number of runs in a given string. Moreover, since we are
only considering a constant number of deletions, one might prefer to have a non-asymptotic
result in order to evaluate construction for small n, say. In [4], Kulkarni et. al. establish
a non-asymptotic upper bound for multiple deletions. While the result is valuable in and
of itself, the methodology, which introduces the use of hypergraphs for analysis of deletion
codes, is also of independent interest.

The strategy here will be to translate the problem of finding the maximum size of deletion
codes into a statement about hypergraphs. We will then formulate an equivalent linear
program, and by relaxing the linear program and looking at the resulting dual, we will arrive
at a good upper bound.

Definition 5. A hypergraph H is a tuple (X, E), where X is a finite set of vertices and E is
a collection of nonempty subsets of X, such that ∪E∈EE = X. Elements of E are commonly
referred to as hyperedges.

A hypergraph generalizes the notion of a graph. While edges in a graph just connect pairs
of vertices, an edge in a hypergraph (a hyperedge) is simply a subset of the set of vertices,
connecting any number of vertices. If a vertex is in an edge, we say that it is covered by
that edge. Also, we call two hyperedges disjoint if their intersection is empty.

We now show how deletion codes can be described using a hypergraph. Consider the
hypergraph Hn,d,Σ = (Σn−d,Dd(Σn)), where Dd(Σn) = {Dd(x) : x ∈ Σn} is the collection of
deletion balls around every string in Σn. This graph completely captures the relationships
between codes and their subsequences. In this context, the problem of finding a deletion
code amounts to finding a collection of hyperedges in Hn,d,Σ which are pairwise disjoint.
It turns out such collections are well studied in the theory of hypergraphs, and are called
matchings.

Definition 6. A matching of a hypergraph H = (X, E) is a collection of pairwise disjoint
hyperedges. The matching number ν(H), is the size of the largest matching of H.

8

Thus the matching number of Hn,d,Σ is exactly the size of the largest d-deletion code in
Σn. The following notion is “dual” to matchings, in a way which we will soon make precise.

Definition 7. A transversal of H = (X, E) is a subset of vertices T such that every edge
covers at least one vertex in T . The transversal number τ(H) is the size of the smallest such
set.

Finally, we define the incidence matrix of a hypergraph.

Definition 8. Let H = (X, E) be a hypergraph with n vertices x1, ..., xn and m edges
E1, ..., Em. Then the indicidence matrix A of H is the n-by-m matrix with Aij = 1 if
xi ∈ Ej, and 0 otherwise.

Note that the incidence matrix depends on the ordering of the vertices and the edges, so
from now on we will assume that these are fixed. Using the incidence matrix, we see that
ν(H) and τ(H) are in fact solutions of the following binary programs.

Lemma 4.1. Let H = (X, E) be a hypergraph with n vertices and m edges, and let A be the
incidence matrix of H. Then:

ν(H) = max{1T z : Az ≤ 1, z ∈ Fm2 }
τ(H) = min{1Tw : ATw ≥ 1, w ∈ Fn2}.

Proof. We first show that any z ∈ Fm2 such that Az ≤ 1 corresponds to a valid matching
on H. Let S(z) be the set of hyperedges of H corresponding to the indices of z which are
equal to 1. Then by the definition of A, we see that the j-th element of Az is the number
of hyperedges in S(z) which cover vertex xj. If this is less than or equal to 1 for each j, it
immediately implies that no vertex is covered by 2 or more hyperedges in S(z), so S(z) is a
valid matching. It is easy to see that any matching of H corresponds to a vector z satisfying
all the constraints, so there is a one-to-one correspondence between matchings and feasible
vectors. Taking the maximum weight of all these vectors will give us the matching number
ν(H).

Similarly, any feasible w corresponds to a valid transversal, and vice versa. Let T (w) be
the set of vertices corresponding to the indices where w has a 1. Then the i-th coordinate
of ATw is exactly the number of edges which cover at least one vertex in T (w). If this
is greater than or equal to 1 for all i, then T (w) is a transversal. Clearly any transversal
has a corresponding feasible w, so the correspondence is one-to-one. Therefore taking the
minimum weight over all feasible w will give us τ(H).

Moreover we can relax this so that z ∈ Nm and w ∈ Nn, since it would clearly never help
to have a coordinate be greater than 1. Therefore we have the integer programs:

ν(H) = max{1T z : Az ≤ 1, z ∈ Nm}
τ(H) = min{1Tw : ATw ≥ 1, w ∈ Nn}.

We have demonstrated that ν(H) and τ(H) can be described as solution to integer
programs, and moreover, we can see that these integer programs are duals of each other!

9

It is a fundamental theorem that weak duality holds for integer programs. That is, any
solution of the dual problem is an upper bound on solutions of the primal problem. In our
case, this implies that

ν(H) ≤ τ(H). (3)

We have made some progress, but the solutions to these integer programs are still fairly
opaque. To get explicit bounds, Kulkarni et al. ([4]) consider the real-valued relaxations of
these integer programs. Letting ν∗(H) and τ ∗(H) denote the values of these relaxations, we
have the linear programs:

ν∗(H) = max{1T z : Az ≤ 1, z ≥ 0} (4)

τ ∗(H) = min{1Tw : ATw ≥ 1, w ≥ 0}. (5)

We call ν∗(H) and τ ∗(H) the fractional matching number and fractional transversal number,
respectively. We will also refer to any element of {z : Az ≤ 1, z ≥ 0} as a fractional matching
and any element of {w : ATw ≥ 1, w ≥ 0} as a fractional transversal. Because (4) and (5)
are now dual linear programs, their solutions obey strong duality, allowing us to conclude
that

ν∗(H) = τ ∗(H). (6)

Now, since the feasible regions for ν(H) and τ(H) are contained in the feasible regions for
their fractional counterparts, we see that

ν(H) ≤ ν∗(H) and τ(H) ≥ τ ∗(H). (7)

Combining these with with (6), we have that for any fractional transversal w,

ν(H) ≤ ν∗(H) = τ ∗(H) ≤ 1Tw. (8)

This key observation is what will allow us to upper bound ν(Hn,d,Σ), which immediately
implies a bound on the size of any (n, d,Σ) deletion code.

4.2 Bigger deletion balls (d > 1)

In order to prove our upper bound, we will need to develop more understanding of deletion
and insertion sets of strings. In particular, we will make use of the following lemma, due to
Hirshbirg and Regnier [9].

Lemma 4.2. Let s ∈ N, s ≤ n, and let x ∈ Σn. Then if x ∈ Ds(y), then

|Ds(x)| ≤ |Ds(y)|. (9)

The proof of this is a result of the following lemma, which we will prove to further
illustrate the unique flavor of analysis that deletion coding demands.

10

Figure 1: Decomposition of l induced by decompositions x∗σy∗ and x′σy′.

Lemma 4.3. Let x ∈ Σn, y ∈ Σm, and let σ ∈ Σ, and let s ∈ N. Then

|Ds(xy)| ≤ |Ds(xσy)|, (10)

where xy and xσy denote the concatenations of those strings.

Proof. We begin by looking at elements of Ds(xσy) which can still be expressed as x′σy′ for
sufficiently long subsequences x′ and y′ of x and y. Formally let

Dσ
s (xσy) = {l ∈ Ds(xσy) : ∃s′ ≤ s, x′ ∈ D′s(x), y′ ∈ Ds−s′(y) s.t. l = x′σy′}.

Note that Dσ
s (xσy) ⊆ Ds(xσy). We will show that Dσ

s (xσy) maps surjectively onto Ds(xy).
We define Γ : Dσ

s (xσy) → Ds(xy) as follows. Write each l ∈ Dσ
s (xσy) as the concatenation

l = x′σy′, for some x′ ∈ Ds′(x) and y′ ∈ Ds−s′(y), where x′ is chosen to have maximal length.
It is clear that there is a unique way to do this. Then define Γ(l) = x′y′. Therefore each l
maps to a unique string in Ds(xy), making Γ well-defined.

To see that it is surjective, consider any t ∈ Ds(xy). Write t = x∗y∗ (again, x∗ ∈
Ds′(x), y∗ ∈ Ds−s′(y), s′ ≤ s) where x∗ has maximal length. Now consider l = x∗σy∗. If this
x∗ is maximal in this decomposition of l, then Γ(l) = x∗y∗ = t. For the sake of contradiction,
assume that l = x′σy′ for some x′, y′ where x′ is strictly longer than x∗. In particular, this
implies that l = x∗σδσy′ (see Figure 1), where x′σỹ = x∗, and ỹσy∗ = y′.

First assume δ is non-empty. Then x∗σδ ≺ x′ ≺ x, so x∗δ ≺ x. Similarly, σy′ ≺ y∗ ≺ y.
But this means that x∗δσy′ = t, a contradiction, since x∗δ is longer than x∗, which was
assumed to be maximal.

Now assume δ is empty, so x∗σσy′ = l, that is, x′ = x∗σ, and y∗ = σy′. Therefore
x′y′ = x∗σy′ = x∗y∗ = t, which again contradiction the fact that x∗ was maximal.

Therefore x∗ was in fact maximal, so Γ(l) = t, so Γ surjective. This implies that

|Ds(xy)| ≤ |Dσ
s (xσy)| ≤ |Ds(xσy)|,

which is what we wanted to prove.

Observe that Lemma 4.2 can now be proven by inductively applying Lemma 4.3.

11

4.3 Putting it all together

Armed with Lemma 4.2 we can now proceed towards upper bounding |C(n, d, q)|.

Theorem 4.4. Let Σ be a finite alphabet of size q, and let d, n ∈ N with d < n. Then

|C(n, d, q)| ≤
∑

x∈Σn−d

1

|Ds(x)|
. (11)

Proof. We do this by constructing a fractional transversal of Hn,d,Σ and applying (8). Re-
call that the vertices Hn,d,Σ correspond to elements of Σn−d, so to construct a fractional
transversal, we must specify w(x) for each x ∈ Σn−d. For each such x, we let

w(x) =
1

|Ds(x)|
. (12)

Now we verify that this is a valid fractional transversal. Clearly w(x) ≥ 0 for all x. To
check that it satisfies the constraint ATw ≥ 1, we need that for each y ∈ Σn (recall that
hyperedges correspond to codes in the original space),∑

x∈Ds(y)

w(x) ≥ 1. (13)

Expanding this, we see that ∑
x∈Ds(y)

w(x) =
∑

x∈Ds(y)

1

|Ds(x)|
(14)

≥
∑

x∈Ds(y)

1

|Ds(y)|
(15)

= 1, (16)

where (15) is a consequence of Lemma 4.2. Therefore w is a valid fractional transversal, and
so applying (8), we see that

|C(n, d, q)| = ν(Hn,d,Σ) (17)

≤ 1Tw (18)

=
∑

x∈Σn−d

1

|Ds(x)|
, (19)

proving the claim.

To gain some understanding of how this bound behaves, we can use our combinatorial
results from Section 1 to find the closed form solution for d = 1.

Corollary 1.

|C(n, 1, 2)| ≤ 2n − 2

n− 1
. (20)

12

Proof. From Theorem 4.4, we know that:

|C(n, 1, 2)| ≤
∑

x∈Fn−1
2

1

|D1(x)|
. (21)

Recall that in the case of 1-deletion, the expression for the deletion ball is very simple:
D1(x) = r(x), where r(x) is the number of runs in x. Therefore∑

x∈Fn−1
2

1

|D1(x)|
=
∑

x∈Fn−1
2

1

r(x)
(22)

=
n−1∑
m=1

|{x ∈ Fn−1
2 : r(x) = m}| 1

m
(23)

=
n−1∑
m=1

2

(
n− 2

m− 1

)
1

m
(24)

=
2

n− 1

n−1∑
m=1

(
n− 1

m

)
(25)

=
2(2n−1 − 1)

n− 1
(26)

=
2n − 2

n− 1
. (27)

We see that asymptotically (20) coincides with Levenshtein’s original bound of 2n

n
. How-

ever, note that this bound also holds for small n as well.
Unfortunately, the size of deletion balls for d > 1 are more complicated, and do not

admit a simple explicit form. However, Kulkarni et. al. use Theorem 4.4 in combination
with various bounds on deletion balls to prove the following non-asymptotic result.

Theorem 4.5. Let |Σ| = q, and let d, n ∈ N, d < n. Then then

|C(n, d, q)| ≤ d!qn

(q − 1)dnd
. (28)

It is difficult to assess the value of these bounds, since there are relatively few code
constructions to compare them against. However, there have been recent results for binary
2-deletion codes which begin to put these bounds in context. To match the phrasing of these
results, we translate Theorem 4.5 into a statement about the number of redundancy bits
required for deletion correction. We see that number of redundnancy bits for an (n, 2,F2)
deletion code is bounded by the following:

n− log2 |C| ≥ n− log2

(
2n+1

n2

)
(29)

= n− (n+ 1− 2 log2(n)) (30)

= 2 log2(n)− 1. (31)

13

In 2015, Brakensiek et. al. [1] published a buffer-based construction for an arbitrary constant
number of deletions d which had cd log2(n) bits of redundancy, where cd = O(d2 log d). For
d = 2 this gave codes with rate approaching 1, however the authors of [3] show that the
constant is c2 = 128, which is far from the lower bound of 2 log2(n)−1. They propose a new
construction which only uses 8 log2(n)+O(log2 log2 n) redundancy bits. Even more recently,
Sima et. al. [10] introduce a code which only uses 7 log2(n) + o(log2(n)) bits of redundancy,
which we can see is very close to optimal. Unfortunately the latter two constructions pertain
to the case d = 2. Redundancy upper bounds for larger d remain an open question.

5 Coding for a fraction of deletions

We conclude with a discussion of a different parameter regime, where instead of deleting a
constant number of symbols, the adversary can now delete a constant fraction p of the bits
sent. More precisely, if n is the block length of a code C, the adversary can delete pn bits,
which means that (1− p)n bits are received on the other end. Recent research has focused
on determining p∗(q), defined as the maximum fraction of deletions such that there exists
a family of pn-deletion correcting codes over an alphabet of size q with rate bounded away
from zero. We will focus on the particular case where q = 2, i.e. binary alphabets.

A first obvious upper bound is p∗(2) ≤ 1
2
. This is because an adversary who can delete

half of the bits can just delete every occurrence of the minority bit, so that all that remains
is all 1s or all 0s. (This generalizes to length a k alphabet, with p∗(q) ≤ 1− 1

q
). Surprisingly,

the question of whether p∗(2) is strictly less than 1
2

is still open.
A priori one might think that that p∗(2) should be much less than 1

2
, since that up-

per bound would also applies to erasure codes, which don’t have the same synchronization
challenges. However, in 2017, Bukh, Guruswami, and H̊astad [2] presented a code which
achieves a positive rate for up to a p =

√
2 − 1 ≈ 0.414 fraction of deletions. This marks a

considerable improvement over the previous lower bound of 0.17, which was achieved using
a random coding argument [7].

We will now provide a sketch of the construction in [2]. Their approach makes use of
concatenated codes, which typically use an explicit “outer code” over a larger alphabet,
and then a good (usually random) “inner code”, which encodes each of the symbols in the
outer code. Curiously, in this construction, the outer code is found using a random coding
argument, while the inner code is given explicitly.

Before we discuss this explicit construction, we will need a few definitions.

Definition 9. Given a subsequence w′ of a string w, let the span of w′ in w, denoted
spanw′(w), be the length of the shortest contiguous subword of w which contains the subse-
quence w′.

For example, the span of 101 in 010010 is 4.

Definition 10. If w′ is a common subsequence of w1 and w2 (w′ ≺ w1 and w′ ≺ w2), we the
define the mutual span of w′ in w1 and w2 as

spanw′(w1, w2) = spanw′(w1) + spanw′(w2).

14

For sake of convenience we may sometimes say that span of a code C is large if the mutual
span of any subsequence w′ in any two codewords w1, w2 ∈ C scales up quickly (read, with
a large linear factor) in the length of the subsequence.

Definition 11. Finally, let LCS(w1, w2) be the length of the longest common subsequence
of w1 and w2.

Note that C is a p-fraction deletion code if and only if for any two codewords c1 and c2,
LCS(c1, c2) < (1− p)n. The goal, then, is to ensure that the LCS of any two codewords of
the concatenated code is sufficiently small. We will sometimes abuse notation and refer to
the LCS of an entire code C to mean the maximal LCS between any two codewords in C.

The following lemma gives the key quantitative relationship between the span of common
subsequences of two strings and their LCS, which the authors of [2] exploit to prove that
the LCS of the final concatenated code is sufficiently small.

Lemma 5.1. Let w1, w2 ∈ Σn. If spanw′(w1, w2) ≥ b · len(w′) − δ for every common
subsequence w′ of w1 and w2 and some δ > 0, then LCS(w1, w2) ≤ 2n+δ

b
.

This is easily seen by observing that for w1, w2 ∈ Σn it must be the case that

spanw′(w1, w2) ≤ 2n.

One can draw an analogy between the expansion requirements of Lemma 5.1 and the con-
nectivity properties of the expander graphs used in the construction of high-rate expander
codes [12].

To ensure the concatenated code has a large span (and thus small LCS by Lemma 5.1),
the authors proceed according to the following roadmap. First, they construct the inner
code to be composed of “harmonic” codewords, which they show have large spans. They
then establish a bound on the span of the concatenated code in terms of the LCS of the
outer code, showing that outer codes with sufficiently small LCS give concatenated codes
with large span. Finally, they use probabilistic methods to prove the existence of outer codes
with sufficiently small LCS.

We now define “harmonic” codewords.

Definition 12. Given an alphabet Σ = {1, ..., q} and a block length qL, the harmonic
codeword of amplitude A is defined as

fA := (1A2A...qA)L/A,

where A divides L, and xA denotes the string x repeated A times.

The key property of these codewords is that if A� B, then a long common subsequence of
fA and fB must have relatively large span. This is easiest to see when A = 1, B > A (Figure
2). To have a small span in fB, the common subsequence must have long runs of the same
letter. However, this will result in a long span in fA, since every subsequent “match” will
required you to skip q + 1 indices. Therefore for A� B, one might expect that for for any
common subsequence s, we have spans(fA, fB) ≈ (q + 1)len(s). The following lemma makes
this precise (note that appearance of the q + 1 factor).

15

Figure 2: The top string is fA, and the bottom string is fB, for A = 1, B = 10. To have a
short span in fB, the common subsequence must have large span in fA, and vice-versa.

Lemma 5.2. Let Σ = [q], and let f∞A be the infinitely repeated word (1A2A...qA)∗. Let A and
B be natural numbers with qA < B, and suppose that s is a common subsequence of f∞A and
f∞B . Then

spans(f
∞
A , f

∞
B) ≥

(
q + 1− qA

B

)
len(s)− 2(A+B). (32)

Now we define our concatenation function. Assume our outer alphabet is [Q], and we
have an inner code of harmonic codewords with alphabet [q], with q < Q. Let R (a parameter
we can later determine) be such that Rq−1 divides L, where kL is the length of each encoded
symbol of the outer code. Then we let τ : [Q]→ [q]qL be defined by

l ∈ [Q] 7→ fRl−1 ∈ [q]qL. (33)

We extend τ to entire words in [Q]n so that for w ∈ [Q]n, τ(w) = (τ(w1), ..., τ(w2)). Using
this concatenation function, the authors establish the following critical bound, which relates
the span of the concatenated code to the LCS of the outer code.

Lemma 5.3. Let w1 and w2 be two words over [Q]n, and let s be a common subsequence of
τ(w1) and τ(w2). Then

spans(τ(w1), τ(w2)) ≥
(
q + 1− q

R
− 8RQ−1

L

)
len(s) (34)

− 2Lq(q + 1)LCS(w1, w2)− 16RQ−1.

We note that the proof of this fact relies on Lemma 5.2.
Using Lemma 5.3, we can choose parameters R and L to prove the existence of positive

rate and high span concatenated codes, given the existence of outer codes with low LCS.
Applying Lemma 5.1, we immediately translate this to a upper bound on the achievable LCS
and thus a lower bound on the correctable fraction of deletions.

Theorem 5.4. Let Cout ∈ [Q]n be a code with LCS less than γn, and let C be the concatenated
code given by applying the mapping τ defined above to Cout for some choice of q ≥ 2 (with

16

the parameters R and L depending only on Q, q and γ). Let N = qnL be the block length of
C. Then for any c1, c2 ∈ C and any common subsequence s,

spans(c1, c2) ≥ (q + 1)len(s)− 4γqN, (35)

Proof. Let

R =

⌈
2q

γ

⌉
and L = 16RQ−1

⌈
1

γ

⌉
. (36)

Plugging R and L into Lemma 5.3, we have that

spans(c1, c2) ≥ (q + 1− γ) len(s)− 2(q + 1)γN − γL (37)

≥(q + 1)len(s)− 4γqN. (38)

Note that for this concatenated construction to give codes with rate bounded away from 0,
we rely on the existence Cout with positive rate. This is proved in [2] using a random coding
argument.

Corollary 2. Let C be the concatenated code given by Theorem 5.4. For c1, c2 ∈ C,

LCS(c1, c2) ≤
(

2 + 4γq

q + 1

)
N ≤

(
2

q + 1
+ 4γ

)
N, (39)

or equivalently, C can correct a fraction

1−
(

2

q + 1
+ 4γ

)
(40)

of deletions.

Proof. The proof is direct by applying Lemma 5.1 to the result of Theorem 5.4.

Note that for q = 2 this already gives us codes correcting up to a 1/3 fraction of deletions.
We refer the reader to [2] to see how the authors further optimize this scheme to obtain
codes correcting a

√
2− 1 fraction.

6 Conclusion

In this report, we presented approaches to the worst-case deletion coding problem. We began
with the classic approach of Levenshtein [5, 6], which got us to the asymptotically optimal
Varshmamov-Tenengoltz 1-deletion codes. We then explored modern approaches to how we
might be able to correct more than just single deletions, reviewing both Kulkarni’s novel
hypergraph-based analysis [4] and an approach by Bukh, Guruswami, and H̊astad based
using concatenated codes which to our knowledge corrects the highest constant fraction of
deletions in current literature [2].

A number of open problems remain in the field of worst-case deletion correction. A couple
we will highlight here are fully characterizing the size of d deletion balls for d > 1, achieving
the minimum number of redundancy bits for a constant number of deletions, and further
closing the gap between the current best fraction of correctable deletion and the current best
upper bound of 1/2.

17

Acknowledgements

We would like to thank Mary Wootters for introducing us to the topic of error correcting
codes and for valuable feedback during our study of deletion codes. We would also like to
thank Noah Shutty for advice on research directions.

References

[1] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. “Efficient Low-Redundancy
Codes for Correcting Multiple Deletions”. In: CoRR abs/1507.06175 (2015). arXiv:
1507.06175. url: http://arxiv.org/abs/1507.06175.

[2] Boris Bukh and Venkatesan Guruswami. “An improved bound on the fraction of cor-
rectable deletions”. In: CoRR abs/1507.01719 (2015). arXiv: 1507.01719. url: http:
//arxiv.org/abs/1507.01719.

[3] Ryan Gabrys and Frederic Sala. “Codes Correcting Two Deletions”. In: CoRR abs/1712.07222
(2017). arXiv: 1712.07222. url: http://arxiv.org/abs/1712.07222.

[4] Ankur A. Kulkarni and Negar Kiyavash. “Non-asymptotic Upper Bounds for Deletion
Correcting Codes”. In: CoRR abs/1211.3128 (2012). arXiv: 1211.3128. url: http:
//arxiv.org/abs/1211.3128.

[5] V. I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and Re-
versals”. In: Soviet Physics Doklady 10 (Feb. 1966), p. 707.

[6] V.I. Levenshtein. “On perfect codes in deletion and insertion metric”. In: Discrete
Math. Appl. 2 (3), pp. 241–258. url: https://doi.org/10.1515/dma.1992.2.3.241.

[7] George S. Lueker. “Improved Bounds on the Average Length of Longest Common
Subsequences”. In: J. ACM 56.3 (May 2009), 17:1–17:38. issn: 0004-5411. doi: 10.
1145/1516512.1516519. url: http://doi.acm.org/10.1145/1516512.1516519.

[8] Michael Mitzenmacher. “A survey of results for deletion channels and related synchro-
nization channels”. In: Probab. Surveys 6 (2009), pp. 1–33. doi: 10.1214/08-PS141.
url: https://doi.org/10.1214/08-PS141.

[9] Daniel S. Hirschberg and Mireille Regnier. “Tight Bounds on the Number of String
Subsequences”. In: Journal of Discrete Algorithms 1 (June 2001).

[10] Jin Sima, Netanel Raviv, and Jehoshua Bruck. “Two Deletion Correcting Codes from
Indicator Vectors”. In: CoRR abs/1806.09240 (2018). arXiv: 1806.09240. url: http:
//arxiv.org/abs/1806.09240.

[11] Neil J. A. Sloane. “On single-deletion-correcting codes”. In: Ohio State University 2
(2001), pp. 273–291.

[12] D. A. Spielman. “Linear-time encodable and decodable error-correcting codes”. In:
IEEE Transactions on Information Theory 42.6 (Nov. 1996), pp. 1723–1731. issn:
0018-9448. doi: 10.1109/18.556668.

18

http://arxiv.org/abs/1507.06175
http://arxiv.org/abs/1507.06175
http://arxiv.org/abs/1507.01719
http://arxiv.org/abs/1507.01719
http://arxiv.org/abs/1507.01719
http://arxiv.org/abs/1712.07222
http://arxiv.org/abs/1712.07222
http://arxiv.org/abs/1211.3128
http://arxiv.org/abs/1211.3128
http://arxiv.org/abs/1211.3128
https://doi.org/10.1515/dma.1992.2.3.241
https://doi.org/10.1145/1516512.1516519
https://doi.org/10.1145/1516512.1516519
http://doi.acm.org/10.1145/1516512.1516519
https://doi.org/10.1214/08-PS141
https://doi.org/10.1214/08-PS141
http://arxiv.org/abs/1806.09240
http://arxiv.org/abs/1806.09240
http://arxiv.org/abs/1806.09240
https://doi.org/10.1109/18.556668

	Introduction
	The Combinatorial Structure of 1-deletion and 1-insertion
	Varshamov-Tenengoltz Codes
	Upper Bounds on d Deletion codes for d 1
	From deletion, to hypergraphs, to linear programs
	Bigger deletion balls (d>1)
	Putting it all together

	Coding for a fraction of deletions
	Conclusion

